ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システムとLSIの設計技術(SLDM)
  3. 2023
  4. 2023-SLDM-203

IoT Network Security Enhancement: Leveraging Deep Learning for Intrusion Detection and Addressing Data Imbalance

https://ipsj.ixsq.nii.ac.jp/records/228849
https://ipsj.ixsq.nii.ac.jp/records/228849
ea2272d5-bbb7-4229-b427-1e0da0a904a1
名前 / ファイル ライセンス アクション
IPSJ-SLDM23203014.pdf IPSJ-SLDM23203014.pdf (825.6 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-10-31
タイトル
タイトル IoT Network Security Enhancement: Leveraging Deep Learning for Intrusion Detection and Addressing Data Imbalance
タイトル
言語 en
タイトル IoT Network Security Enhancement: Leveraging Deep Learning for Intrusion Detection and Addressing Data Imbalance
言語
言語 eng
キーワード
主題Scheme Other
主題 ポスター
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tokyo Institute of Technology
著者所属
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者名 Qingyu, Zeng

× Qingyu, Zeng

Qingyu, Zeng

Search repository
Yuko, Hara-Azumi

× Yuko, Hara-Azumi

Yuko, Hara-Azumi

Search repository
著者名(英) Qingyu, Zeng

× Qingyu, Zeng

en Qingyu, Zeng

Search repository
Yuko, Hara-Azumi

× Yuko, Hara-Azumi

en Yuko, Hara-Azumi

Search repository
論文抄録
内容記述タイプ Other
内容記述 In the era of the Internet of Things (IoT), ensuring robust network security is important. This work studies an innovative approach to enhance IoT network security by deep learning-based intrusion detection while addressing data imbalance challenges. We comprehensively integrate advanced deep learning models with tailored data imbalance mitigation strategies. We also employ novel synthetic data generation techniques to bolster the model's resilience against real-world adversarial attacks. Extensive evaluations on established datasets, including UNSW-NB15, NSL-KDD, and IoT23, demonstrate significant improvements in intrusion detection accuracy, especially in detecting minority-class threats. Additionally, our research extends to deploying models on resource-constrained IoT devices, such as Raspberry Pi and Nvidia Jetson, improving real-time intrusion detection efficiency in these small-scale devices.
論文抄録(英)
内容記述タイプ Other
内容記述 In the era of the Internet of Things (IoT), ensuring robust network security is important. This work studies an innovative approach to enhance IoT network security by deep learning-based intrusion detection while addressing data imbalance challenges. We comprehensively integrate advanced deep learning models with tailored data imbalance mitigation strategies. We also employ novel synthetic data generation techniques to bolster the model's resilience against real-world adversarial attacks. Extensive evaluations on established datasets, including UNSW-NB15, NSL-KDD, and IoT23, demonstrate significant improvements in intrusion detection accuracy, especially in detecting minority-class threats. Additionally, our research extends to deploying models on resource-constrained IoT devices, such as Raspberry Pi and Nvidia Jetson, improving real-time intrusion detection efficiency in these small-scale devices.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11451459
書誌情報 研究報告システムとLSIの設計技術(SLDM)

巻 2023-SLDM-203, 号 14, p. 1-3, 発行日 2023-10-31
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8639
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:41:46.823799
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3