ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. モバイルコンピューティングと新社会システム(MBL)
  3. 2023
  4. 2023-MBL-108

Preliminary Investigation of Estimating Depth Images of Moving Objects from Wi-Fi Channel State Information

https://ipsj.ixsq.nii.ac.jp/records/227960
https://ipsj.ixsq.nii.ac.jp/records/227960
74c05e4f-5ae7-4681-acc6-862000b61139
名前 / ファイル ライセンス アクション
IPSJ-MBL23108031.pdf IPSJ-MBL23108031.pdf (3.1 MB)
 2025年9月18日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MBL:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-09-18
タイトル
タイトル Preliminary Investigation of Estimating Depth Images of Moving Objects from Wi-Fi Channel State Information
タイトル
言語 en
タイトル Preliminary Investigation of Estimating Depth Images of Moving Objects from Wi-Fi Channel State Information
言語
言語 eng
キーワード
主題Scheme Other
主題 測位技術
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
NTT Communication Science Laboratories
著者所属
NTT Communication Science Laboratories
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
NTT Communication Science Laboratories
著者所属(英)
en
NTT Communication Science Laboratories
著者名 Guanyu, Cao

× Guanyu, Cao

Guanyu, Cao

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
Kazuya, Ohara

× Kazuya, Ohara

Kazuya, Ohara

Search repository
Yasue, Kishino

× Yasue, Kishino

Yasue, Kishino

Search repository
著者名(英) Guanyu, Cao

× Guanyu, Cao

en Guanyu, Cao

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
Kazuya, Ohara

× Kazuya, Ohara

en Kazuya, Ohara

Search repository
Yasue, Kishino

× Yasue, Kishino

en Yasue, Kishino

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper explores a practical approach to estimate depth images of moving humans and objects by Wi-Fi Channel State Information (CSI). This technique enables visual sensing with commercial off-the-shelf Wi-Fi devices that saves expense while being invariant to illumination and occlusion, and friendly to privacy. However, training a cross-modality model usually requires a large amount of paired data. The variety of human postures further exacerbates the data requirement. We leverage Variational Auto-Encoder (VAE) to learn the regularized latent space of depth images in order to estimate unseen images. Besides, we adopt metric learning to learn the physical attributes of depth images. These strategies mitigate the labor of collecting paired data, and enable the use of in-the-wild depth image datasets. Concretely, a teacher-student network is established, where the teacher network is based on Beta-VAE that learns the latent space of depth images with the help of inductive bias containing shape, size, planar coordinates and depth coordinates. The student network is an encoder that learns such latent space via knowledge distillation. The student network and the decoder of the teacher network constitute an end-to-end depth image estimation network from CSI. To the best of our knowledge, our proposed model is the first to estimate the depth images from CSI.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper explores a practical approach to estimate depth images of moving humans and objects by Wi-Fi Channel State Information (CSI). This technique enables visual sensing with commercial off-the-shelf Wi-Fi devices that saves expense while being invariant to illumination and occlusion, and friendly to privacy. However, training a cross-modality model usually requires a large amount of paired data. The variety of human postures further exacerbates the data requirement. We leverage Variational Auto-Encoder (VAE) to learn the regularized latent space of depth images in order to estimate unseen images. Besides, we adopt metric learning to learn the physical attributes of depth images. These strategies mitigate the labor of collecting paired data, and enable the use of in-the-wild depth image datasets. Concretely, a teacher-student network is established, where the teacher network is based on Beta-VAE that learns the latent space of depth images with the help of inductive bias containing shape, size, planar coordinates and depth coordinates. The student network is an encoder that learns such latent space via knowledge distillation. The student network and the decoder of the teacher network constitute an end-to-end depth image estimation network from CSI. To the best of our knowledge, our proposed model is the first to estimate the depth images from CSI.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11851388
書誌情報 研究報告モバイルコンピューティングと新社会システム(MBL)

巻 2023-MBL-108, 号 31, p. 1-8, 発行日 2023-09-18
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8817
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:59:58.071529
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3