{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00227632","sets":["1164:2735:11166:11323"]},"path":["11323"],"owner":"44499","recid":"227632","title":["帯行列に対する最小特異値の精密な下界の計算法の提案"],"pubdate":{"attribute_name":"公開日","attribute_value":"2023-08-31"},"_buckets":{"deposit":"b71b98c8-395c-47ef-9ba2-e2e34983be4c"},"_deposit":{"id":"227632","pid":{"type":"depid","value":"227632","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"帯行列に対する最小特異値の精密な下界の計算法の提案","author_link":["606584","606587","606586","606585","606583"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"帯行列に対する最小特異値の精密な下界の計算法の提案"},{"subitem_title":"Proposal for Computing Precise Lower Bounds on Smallest Singular Value for Band Matrix","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2023-08-31","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"福井大学"},{"subitem_text_value":"福井大学"},{"subitem_text_value":"奈良女子大学"},{"subitem_text_value":"福井大学"},{"subitem_text_value":"大阪成蹊大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"University of Fukui","subitem_text_language":"en"},{"subitem_text_value":"University of Fukui","subitem_text_language":"en"},{"subitem_text_value":"Nara Women's University","subitem_text_language":"en"},{"subitem_text_value":"University of Fukui","subitem_text_language":"en"},{"subitem_text_value":"Osaka Seikei University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/227632/files/IPSJ-MPS23145003.pdf","label":"IPSJ-MPS23145003.pdf"},"date":[{"dateType":"Available","dateValue":"2025-08-31"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-MPS23145003.pdf","filesize":[{"value":"957.4 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"17"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"f3d3453d-9f3b-4f86-8129-1d4a76da6f13","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2023 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"久保井, 五貴"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"西川, 俊央"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"髙田, 雅美"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"木村, 欣司"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"中村, 佳正"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10505667","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8833","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"主成分分析において,密行列を用いて計算を行う場合,Bischof 法と Wu 法によって,密行列は帯行列に変換される.帯行列として最も簡単な場合である上 3 重対角行列へと変換した場合を考えると,従来から計算に用いられてきた上 2 重対角行列へと変換した場合と異なり,最小特異値の下界としてコラッツの不等式を利用できない.よって,クラスタ特異値が存在する場合,陽的シフト付き Orthogonal QD(OQDS)法の収束を加速させることができない.そこで,既存の下界であるラゲール下界より得られる量に注目し,その量が下界である場合にはそのまま採用し,上界である場合には下界へと変更する.以上の手法により,OQDS 法はクラスタ特異値を持つ下 3 重対角行列にも適用可能となる.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"6","bibliographic_titles":[{"bibliographic_title":"研究報告数理モデル化と問題解決(MPS)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2023-08-31","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicVolumeNumber":"2023-MPS-145"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":227632,"updated":"2025-06-30T02:30:07.909590+00:00","links":{},"created":"2025-01-19T01:26:53.333114+00:00"}