ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2023
  4. 2023-BIO-75

Deep learning model for accurately predicting protein-protein interactions from sequence data alone

https://ipsj.ixsq.nii.ac.jp/records/227626
https://ipsj.ixsq.nii.ac.jp/records/227626
054a3926-7bb8-4fda-a993-89bebe6ae3ec
名前 / ファイル ライセンス アクション
IPSJ-BIO23075006.pdf IPSJ-BIO23075006.pdf (792.1 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-08-30
タイトル
タイトル Deep learning model for accurately predicting protein-protein interactions from sequence data alone
タイトル
言語 en
タイトル Deep learning model for accurately predicting protein-protein interactions from sequence data alone
言語
言語 eng
キーワード
主題Scheme Other
主題 ディスカッショントラック
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyushu Institute of Technology
著者所属
Kyushu Institute of Technology
著者所属(英)
en
Kyushu Institute of Technology
著者所属(英)
en
Kyushu Institute of Technology
著者名 Hiroyuki, Kurata

× Hiroyuki, Kurata

Hiroyuki, Kurata

Search repository
Sho, Tsukiyama

× Sho, Tsukiyama

Sho, Tsukiyama

Search repository
著者名(英) Hiroyuki, Kurata

× Hiroyuki, Kurata

en Hiroyuki, Kurata

Search repository
Sho, Tsukiyama

× Sho, Tsukiyama

en Sho, Tsukiyama

Search repository
論文抄録
内容記述タイプ Other
内容記述 Viral infection involves a large number of protein-protein interactions (PPIs) between human and virus. Few interspecies PPIs have been identified, because experimental methods including mass spectrometry are time-consuming and expensive, and molecular dynamic simulation is limited only to the proteins whose 3D structures are solved. Sequence-based machine learning methods are expected to overcome these problems. We have developed the (Long Short Term Memory) LSTM model with word2vec to predict PPIs between human and virus, named LSTM-PHV by using amino acid sequences and further developed a computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network.
論文抄録(英)
内容記述タイプ Other
内容記述 Viral infection involves a large number of protein-protein interactions (PPIs) between human and virus. Few interspecies PPIs have been identified, because experimental methods including mass spectrometry are time-consuming and expensive, and molecular dynamic simulation is limited only to the proteins whose 3D structures are solved. Sequence-based machine learning methods are expected to overcome these problems. We have developed the (Long Short Term Memory) LSTM model with word2vec to predict PPIs between human and virus, named LSTM-PHV by using amino acid sequences and further developed a computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2023-BIO-75, 号 6, p. 1-1, 発行日 2023-08-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8590
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:07:07.878524
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3