{"created":"2025-01-19T01:26:26.639477+00:00","updated":"2025-01-19T12:16:02.965114+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00227130","sets":["1164:2240:11176:11310"]},"path":["11310"],"owner":"44499","recid":"227130","title":["Scalable Training of Graph Convolutional Networks on Supercomputers"],"pubdate":{"attribute_name":"公開日","attribute_value":"2023-07-27"},"_buckets":{"deposit":"907f362f-01de-4625-b869-e0747c87a58b"},"_deposit":{"id":"227130","pid":{"type":"depid","value":"227130","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"Scalable Training of Graph Convolutional Networks on Supercomputers","author_link":["604615","604620","604617","604625","604626","604619","604616","604621","604618","604624","604623","604622"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Scalable Training of Graph Convolutional Networks on Supercomputers"},{"subitem_title":"Scalable Training of Graph Convolutional Networks on Supercomputers","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"機械学習","subitem_subject_scheme":"Other"}]},"item_type_id":"4","publish_date":"2023-07-27","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Tokyo Institute of Technology/RIKEN Center for Computational Science"},{"subitem_text_value":"National Institute of Advanced Industrial Science and Technology (AIST)/RIKEN Center for Computational Science"},{"subitem_text_value":"National Institute of Advanced Industrial Science and Technology (AIST)"},{"subitem_text_value":"RIKEN Center for Computational Science"},{"subitem_text_value":"Tokyo Institute of Technology"},{"subitem_text_value":"RIKEN Center for Computational Science"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Tokyo Institute of Technology / RIKEN Center for Computational Science","subitem_text_language":"en"},{"subitem_text_value":"National Institute of Advanced Industrial Science and Technology (AIST) / RIKEN Center for Computational Science","subitem_text_language":"en"},{"subitem_text_value":"National Institute of Advanced Industrial Science and Technology (AIST)","subitem_text_language":"en"},{"subitem_text_value":"RIKEN Center for Computational Science","subitem_text_language":"en"},{"subitem_text_value":"Tokyo Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"RIKEN Center for Computational Science","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/227130/files/IPSJ-HPC23190019.pdf","label":"IPSJ-HPC23190019.pdf"},"date":[{"dateType":"Available","dateValue":"2025-07-27"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-HPC23190019.pdf","filesize":[{"value":"863.5 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"14"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"a6e60e25-e0db-4c29-80ff-56367c6caed3","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2023 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Chen, Zhuang"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Peng, Chen"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Xin, Liu"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Satoshi, Matsuoka"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Toshio, Endo"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Mohamed, Wahib"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Chen, Zhuang","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Peng, Chen","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Xin, Liu","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Satoshi, Matsuoka","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Toshio, Endo","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Mohamed, Wahib","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10463942","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8841","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Graph Convolutional Networks (GCNs) are widely used across diverse domains. However, training distributed full-batch GCNs on graphs presents challenges due to inefficient memory access patterns and the high communication overhead caused by the graph's irregular structures. In this paper, we propose efficient aggregation operators designed for irregular memory access patterns. Additionally, we employ a pre- and delayed-aggregation approach and leverage half-precision communication to reduce communication costs. By combining these techniques, we have developed an efficient and scalable GCN training framework specifically designed for distributed systems. Experimental results on several graph datasets demonstrate that our proposed method achieves a remarkable speedup of up to 4.75x compared to the state-of-the-art method on the ABCI supercomputer.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Graph Convolutional Networks (GCNs) are widely used across diverse domains. However, training distributed full-batch GCNs on graphs presents challenges due to inefficient memory access patterns and the high communication overhead caused by the graph's irregular structures. In this paper, we propose efficient aggregation operators designed for irregular memory access patterns. Additionally, we employ a pre- and delayed-aggregation approach and leverage half-precision communication to reduce communication costs. By combining these techniques, we have developed an efficient and scalable GCN training framework specifically designed for distributed systems. Experimental results on several graph datasets demonstrate that our proposed method achieves a remarkable speedup of up to 4.75x compared to the state-of-the-art method on the ABCI supercomputer.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"10","bibliographic_titles":[{"bibliographic_title":"研究報告ハイパフォーマンスコンピューティング(HPC)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2023-07-27","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"19","bibliographicVolumeNumber":"2023-HPC-190"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":227130,"links":{}}