ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. セキュリティ心理学とトラスト(SPT)
  3. 2023
  4. 2023-SPT-052

Empirical evaluation of anonymized data with ARX Anonymization Tool

https://ipsj.ixsq.nii.ac.jp/records/227055
https://ipsj.ixsq.nii.ac.jp/records/227055
449cec61-9a99-47d7-b1ce-cd4e05cb39b9
名前 / ファイル ライセンス アクション
IPSJ-SPT23052048.pdf IPSJ-SPT23052048.pdf (1.9 MB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-07-17
タイトル
タイトル Empirical evaluation of anonymized data with ARX Anonymization Tool
タイトル
言語 en
タイトル Empirical evaluation of anonymized data with ARX Anonymization Tool
言語
言語 eng
キーワード
主題Scheme Other
主題 CSEC
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Institute of Statistical Mathematics
著者所属
Institute of Statistical Mathematics
著者所属(英)
en
Institute of Statistical Mathematics
著者所属(英)
en
Institute of Statistical Mathematics
著者名 Takumi, Sugiyama

× Takumi, Sugiyama

Takumi, Sugiyama

Search repository
Kazuhiro, Minami

× Kazuhiro, Minami

Kazuhiro, Minami

Search repository
著者名(英) Takumi, Sugiyama

× Takumi, Sugiyama

en Takumi, Sugiyama

Search repository
Kazuhiro, Minami

× Kazuhiro, Minami

en Kazuhiro, Minami

Search repository
論文抄録
内容記述タイプ Other
内容記述 We examine the feasibility of evaluating the risk and utility of anonymized data using the open resource anonymization tool called ARX. As a first step, we study the risk of k-anonymized medical data based on the privacy metric of l-diversity. Our experiments show that significant portions of equivalence classes in k-anonymized data fail to satisfy the diversity requirement of l-diversity. However, we also find that anonymized data based on l-diversity further reduces the utility of anonymized data in comparison with that based on k-anonymity. We finally discuss some lessons from using ARX from the practical viewpoint.
論文抄録(英)
内容記述タイプ Other
内容記述 We examine the feasibility of evaluating the risk and utility of anonymized data using the open resource anonymization tool called ARX. As a first step, we study the risk of k-anonymized medical data based on the privacy metric of l-diversity. Our experiments show that significant portions of equivalence classes in k-anonymized data fail to satisfy the diversity requirement of l-diversity. However, we also find that anonymized data based on l-diversity further reduces the utility of anonymized data in comparison with that based on k-anonymity. We finally discuss some lessons from using ARX from the practical viewpoint.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12628305
書誌情報 研究報告セキュリティ心理学とトラスト(SPT)

巻 2023-SPT-52, 号 48, p. 1-7, 発行日 2023-07-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8671
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:17:31.187447
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3