@techreport{oai:ipsj.ixsq.nii.ac.jp:00226714,
 author = {竹澤, 祐貴 and 佐藤, 竜馬 and 包, 含 and 丹羽, 健太 and 山田, 誠 and Yuki, Takezawa and Ryoma, Sato and Han, Bao and Kenta, Niwa and Makoto, Yamada},
 issue = {59},
 month = {Jun},
 note = {分散学習は近年,並列計算やプライバシー保護への応用が期待され注目されている.多くの研究によって,より速い consensus rate を持つグラフをネットワークとして用いると,分散学習の収束率や精度を向上させられると示されている.しかし,consensus rate が速いグラフ,例えば指数グラフは,一般に最大次数が大きく,通信コストが大きくかかる.そのため,速い consensus rate と小さな最大次数の両方を持つグラフを用いることが重要である.本研究では,そのようなグラフを Base-(k + 1) Graph を提案し,Base-(k + 1) Graph は Decentralized SGD (DSGD) を指数グラフよりも少ない通信コストでかつ速く収束させることができることを示した., Decentralized learning has recently been attracting increasing attention for its applications in parallel computation and privacy preservation. Many recent studies stated that the underlying network topology with a faster consensus rate leads to a better convergence rate and accuracy for decentralized learning. However, a topology with a fast consensus rate, e.g., the exponential graph, generally has a large maximum degree, which incurs significant communication costs. Thus, seeking topologies with both a fast consensus rate and small maximum degree is important. In this study, we propose a novel topology, the Base-(k + 1) Graph, which endows Decentralized SGD with both a faster convergence rate and more communication efficiency than the exponential graph.},
 title = {有限時間収束性による分散学習のための通信効率に優れたネットワーク構造},
 year = {2023}
}