ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2023
  4. 2023-MPS-143

AtLASS: A Scheme for End-to-End Prediction of Splice Sites using Attention-based Bi-LSTM

https://ipsj.ixsq.nii.ac.jp/records/226511
https://ipsj.ixsq.nii.ac.jp/records/226511
f24c5526-208b-4577-a8a2-fb905584183e
名前 / ファイル ライセンス アクション
IPSJ-MPS23143043.pdf IPSJ-MPS23143043.pdf (1.4 MB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-06-22
タイトル
タイトル AtLASS: A Scheme for End-to-End Prediction of Splice Sites using Attention-based Bi-LSTM
タイトル
言語 en
タイトル AtLASS: A Scheme for End-to-End Prediction of Splice Sites using Attention-based Bi-LSTM
言語
言語 eng
キーワード
主題Scheme Other
主題 バイオ情報学1
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Science and Technology, University of Tsukuba/Graduate School of Life and Environmental Sciences, University of Tsukuba
著者所属
Department of Clinical Medicine, University of Tsukuba
著者所属
Center for Computational Sciences, University of Tsukuba
著者所属
Center for Computational Sciences, University of Tsukuba
著者所属
Center for Computational Sciences, University of Tsukuba
著者所属
Center for Computational Sciences, University of Tsukuba
著者所属(英)
en
Graduate School of Science and Technology, University of Tsukuba / Graduate School of Life and Environmental Sciences, University of Tsukuba
著者所属(英)
en
Department of Clinical Medicine, University of Tsukuba
著者所属(英)
en
Center for Computational Sciences, University of Tsukuba
著者所属(英)
en
Center for Computational Sciences, University of Tsukuba
著者所属(英)
en
Center for Computational Sciences, University of Tsukuba
著者所属(英)
en
Center for Computational Sciences, University of Tsukuba
著者名 Ryo, Harada

× Ryo, Harada

Ryo, Harada

Search repository
Keitaro, Kume

× Keitaro, Kume

Keitaro, Kume

Search repository
Kazumasa, Horie

× Kazumasa, Horie

Kazumasa, Horie

Search repository
Takuro, Nakayama

× Takuro, Nakayama

Takuro, Nakayama

Search repository
Yuji, Inagaki

× Yuji, Inagaki

Yuji, Inagaki

Search repository
Toshiyuki, Amagasa

× Toshiyuki, Amagasa

Toshiyuki, Amagasa

Search repository
著者名(英) Ryo, Harada

× Ryo, Harada

en Ryo, Harada

Search repository
Keitaro, Kume

× Keitaro, Kume

en Keitaro, Kume

Search repository
Kazumasa, Horie

× Kazumasa, Horie

en Kazumasa, Horie

Search repository
Takuro, Nakayama

× Takuro, Nakayama

en Takuro, Nakayama

Search repository
Yuji, Inagaki

× Yuji, Inagaki

en Yuji, Inagaki

Search repository
Toshiyuki, Amagasa

× Toshiyuki, Amagasa

en Toshiyuki, Amagasa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Eukaryotic genomes contain exons and introns, and it is necessary to accurately identify exon-intron boundaries, i.e., splice sites, to annotate genomes. To address this problem, many previous works have proposed annotation methods/tools based on RNA-seq evidence. Many recent works exploit neural networks (NNs) as their prediction models, but only a few can be used to generate new genome annotation in practice. In this study, we propose AtLASS, a fully automated method for predicting splice sites from genomic and RNA-seq data using attention-based Bi-LSTM (Bidirectional Long Short-Term Memory). We exploit two-stage training on RNA-seq data to address the problem of biased label problem, thereby reducing the false positives. The experiments on the genomes of three species show that the performance of the proposed method itself is comparable to that of existing methods, but we can achieve better performance by combining the outputs of the proposed method and the existing method. The proposed method is the first program specialized in end-to-end splice site prediction using NNs.
論文抄録(英)
内容記述タイプ Other
内容記述 Eukaryotic genomes contain exons and introns, and it is necessary to accurately identify exon-intron boundaries, i.e., splice sites, to annotate genomes. To address this problem, many previous works have proposed annotation methods/tools based on RNA-seq evidence. Many recent works exploit neural networks (NNs) as their prediction models, but only a few can be used to generate new genome annotation in practice. In this study, we propose AtLASS, a fully automated method for predicting splice sites from genomic and RNA-seq data using attention-based Bi-LSTM (Bidirectional Long Short-Term Memory). We exploit two-stage training on RNA-seq data to address the problem of biased label problem, thereby reducing the false positives. The experiments on the genomes of three species show that the performance of the proposed method itself is comparable to that of existing methods, but we can achieve better performance by combining the outputs of the proposed method and the existing method. The proposed method is the first program specialized in end-to-end splice site prediction using NNs.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2023-MPS-143, 号 43, p. 1-6, 発行日 2023-06-22
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:27:13.498456
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3