ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音楽情報科学(MUS)
  3. 2023
  4. 2023-MUS-137

SBERT-based Musical Components Estimation from Lyrics Trained with Imbalanced “Orpheus” Data

https://ipsj.ixsq.nii.ac.jp/records/226361
https://ipsj.ixsq.nii.ac.jp/records/226361
0682f5f1-12b8-47de-b806-b9793ad57011
名前 / ファイル ライセンス アクション
IPSJ-MUS23137057.pdf IPSJ-MUS23137057.pdf (869.5 kB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
MUS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-06-16
タイトル
タイトル SBERT-based Musical Components Estimation from Lyrics Trained with Imbalanced “Orpheus” Data
タイトル
言語 en
タイトル SBERT-based Musical Components Estimation from Lyrics Trained with Imbalanced “Orpheus” Data
言語
言語 eng
キーワード
主題Scheme Other
主題 一般発表
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属
Department of Data Science, Faculty of Business Administration, Asia University
著者所属
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属(英)
en
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属(英)
en
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属(英)
en
Department of Data Science, Faculty of Business Administration, Asia University
著者所属(英)
en
Department of Computer and Network Engineering, The University of Electro-Communications
著者所属(英)
en
Department of Computer and Network Engineering, The University of Electro-Communications
著者名 Mastuti, Puspitasari

× Mastuti, Puspitasari

Mastuti, Puspitasari

Search repository
Takuya, Takahashi

× Takuya, Takahashi

Takuya, Takahashi

Search repository
Gen, Hori

× Gen, Hori

Gen, Hori

Search repository
Shigeki, Sagayama

× Shigeki, Sagayama

Shigeki, Sagayama

Search repository
Toru, Nakashika

× Toru, Nakashika

Toru, Nakashika

Search repository
著者名(英) Mastuti, Puspitasari

× Mastuti, Puspitasari

en Mastuti, Puspitasari

Search repository
Takuya, Takahashi

× Takuya, Takahashi

en Takuya, Takahashi

Search repository
Gen, Hori

× Gen, Hori

en Gen, Hori

Search repository
Shigeki, Sagayama

× Shigeki, Sagayama

en Shigeki, Sagayama

Search repository
Toru, Nakashika

× Toru, Nakashika

en Toru, Nakashika

Search repository
論文抄録
内容記述タイプ Other
内容記述 This research was done to develop neural models that are capable of estimating appropriate musical components based on lyrics input. We extracted paired data of lyrics and musical components from “Orpheus”, a Japanese automated composition system with over 6000 user-published songs on the platform and used them as training data. These lyrics are converted into text embeddings with Sentence-BERT and then fed into neural models with their respective musical components for training. The imbalance in the data is mitigated by using focal loss to avoid overfitting and the performance of our models are evaluated subjectively through a survey. These models can be implemented in automated composition system to provide automated setup recommendation for the users and or used as a source of inspiration in conventional composition.
論文抄録(英)
内容記述タイプ Other
内容記述 This research was done to develop neural models that are capable of estimating appropriate musical components based on lyrics input. We extracted paired data of lyrics and musical components from “Orpheus”, a Japanese automated composition system with over 6000 user-published songs on the platform and used them as training data. These lyrics are converted into text embeddings with Sentence-BERT and then fed into neural models with their respective musical components for training. The imbalance in the data is mitigated by using focal loss to avoid overfitting and the performance of our models are evaluated subjectively through a survey. These models can be implemented in automated composition system to provide automated setup recommendation for the users and or used as a source of inspiration in conventional composition.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438388
書誌情報 研究報告音楽情報科学(MUS)

巻 2023-MUS-137, 号 57, p. 1-5, 発行日 2023-06-16
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8752
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:30:06.604030
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3