ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ユビキタスコンピューティングシステム(UBI)
  3. 2023
  4. 2023-UBI-078

Preliminary Investigation of Using SSL for Complex Work Activity Recognition in Industrial Settings

https://ipsj.ixsq.nii.ac.jp/records/226074
https://ipsj.ixsq.nii.ac.jp/records/226074
a525357b-81b9-4982-b985-487936dec96d
名前 / ファイル ライセンス アクション
IPSJ-UBI23078009.pdf IPSJ-UBI23078009.pdf (3.7 MB)
 2025年5月17日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, UBI:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-05-17
タイトル
タイトル Preliminary Investigation of Using SSL for Complex Work Activity Recognition in Industrial Settings
タイトル
言語 en
タイトル Preliminary Investigation of Using SSL for Complex Work Activity Recognition in Industrial Settings
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者名 Qingxin, Xia

× Qingxin, Xia

Qingxin, Xia

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
Takahiro, Hara

× Takahiro, Hara

Takahiro, Hara

Search repository
Hirotomo, Oshima

× Hirotomo, Oshima

Hirotomo, Oshima

Search repository
Yasuo, Namioka

× Yasuo, Namioka

Yasuo, Namioka

Search repository
著者名(英) Qingxin, Xia

× Qingxin, Xia

en Qingxin, Xia

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
Takahiro, Hara

× Takahiro, Hara

en Takahiro, Hara

Search repository
Hirotomo, Oshima

× Hirotomo, Oshima

en Hirotomo, Oshima

Search repository
Yasuo, Namioka

× Yasuo, Namioka

en Yasuo, Namioka

Search repository
論文抄録
内容記述タイプ Other
内容記述 Activity recognition using sensor data collected by wearable sensors has been actively studied in the ubicomp community. However, in industrial settings, (1) labeled sensor data collection is costly and (2) the activities performed by workers are more complex than those of daily activities such as walking and running. This study presents a new self-supervised learning approach that effectively utilizes unlabeled data to improve complex activity recognition performance in industrial domain. In this study, we focus on characteristic actions in each work activity (i.e., operation). We first select sensor data motifs corresponding to the characteristic actions that uniquely and consistently occur in an operation. Then, we calculate the similarity series of the motifs that indicate the occurrence of the motifs in every operation. We train a neural network so that it outputs the reconstructed similarity series, which is helpful in identifying the operations containing the motifs. The trained feature extractor is applied to the downstream task that uses limited labeled data to recognize complex work activities. The proposed approach was evaluated on real-world work activity data and achieved state-of-the-art results.
論文抄録(英)
内容記述タイプ Other
内容記述 Activity recognition using sensor data collected by wearable sensors has been actively studied in the ubicomp community. However, in industrial settings, (1) labeled sensor data collection is costly and (2) the activities performed by workers are more complex than those of daily activities such as walking and running. This study presents a new self-supervised learning approach that effectively utilizes unlabeled data to improve complex activity recognition performance in industrial domain. In this study, we focus on characteristic actions in each work activity (i.e., operation). We first select sensor data motifs corresponding to the characteristic actions that uniquely and consistently occur in an operation. Then, we calculate the similarity series of the motifs that indicate the occurrence of the motifs in every operation. We train a neural network so that it outputs the reconstructed similarity series, which is helpful in identifying the operations containing the motifs. The trained feature extractor is applied to the downstream task that uses limited labeled data to recognize complex work activities. The proposed approach was evaluated on real-world work activity data and achieved state-of-the-art results.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11838947
書誌情報 研究報告ユビキタスコンピューティングシステム(UBI)

巻 2023-UBI-78, 号 9, p. 1-8, 発行日 2023-05-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8698
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:35:18.952493
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3