ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.64
  3. No.5

Subjective and Objective Thermal Comfort Estimation Using Wearable Sensors and Environmental Sensors

https://ipsj.ixsq.nii.ac.jp/records/225942
https://ipsj.ixsq.nii.ac.jp/records/225942
6320173d-588b-4287-ae82-efb601a4c8ed
名前 / ファイル ライセンス アクション
IPSJ-JNL6405014.pdf IPSJ-JNL6405014.pdf (2.9 MB)
 2025年5月15日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2023-05-15
タイトル
タイトル Subjective and Objective Thermal Comfort Estimation Using Wearable Sensors and Environmental Sensors
タイトル
言語 en
タイトル Subjective and Objective Thermal Comfort Estimation Using Wearable Sensors and Environmental Sensors
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] Thermal Comfort, PMV, Wearable Sensor, Machine Learning
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Engineering, Kobe University
著者所属
Graduate School of Engineering, Kobe University
著者所属
SoftBank Corp.
著者所属
SoftBank Corp.
著者所属
SoftBank Corp.
著者所属
Graduate School of Engineering, Kobe University
著者所属
Graduate School of Engineering, Kobe University
著者所属(英)
en
Graduate School of Engineering, Kobe University
著者所属(英)
en
Graduate School of Engineering, Kobe University
著者所属(英)
en
SoftBank Corp.
著者所属(英)
en
SoftBank Corp.
著者所属(英)
en
SoftBank Corp.
著者所属(英)
en
Graduate School of Engineering, Kobe University
著者所属(英)
en
Graduate School of Engineering, Kobe University
著者名 Haomin, Mao

× Haomin, Mao

Haomin, Mao

Search repository
Shuhei, Tsuchida

× Shuhei, Tsuchida

Shuhei, Tsuchida

Search repository
Yuma, Suzuki

× Yuma, Suzuki

Yuma, Suzuki

Search repository
Rintaro, Kanada

× Rintaro, Kanada

Rintaro, Kanada

Search repository
Takayuki, Hori

× Takayuki, Hori

Takayuki, Hori

Search repository
Tsutomu, Terada

× Tsutomu, Terada

Tsutomu, Terada

Search repository
Masahiko, Tsukamoto

× Masahiko, Tsukamoto

Masahiko, Tsukamoto

Search repository
著者名(英) Haomin, Mao

× Haomin, Mao

en Haomin, Mao

Search repository
Shuhei, Tsuchida

× Shuhei, Tsuchida

en Shuhei, Tsuchida

Search repository
Yuma, Suzuki

× Yuma, Suzuki

en Yuma, Suzuki

Search repository
Rintaro, Kanada

× Rintaro, Kanada

en Rintaro, Kanada

Search repository
Takayuki, Hori

× Takayuki, Hori

en Takayuki, Hori

Search repository
Tsutomu, Terada

× Tsutomu, Terada

en Tsutomu, Terada

Search repository
Masahiko, Tsukamoto

× Masahiko, Tsukamoto

en Masahiko, Tsukamoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 An ideal self-adjusting environment requires adapting human thermal comfort automatically and continuously measuring the changes in human thermal comfort. According to the PMV (Predicted Mean Vote) model, human thermal comfort could be evaluated by human biometric data and environmental data. In this paper, we proposed a method to estimate human thermal comfort through a small number of wearable and environmental sensors based on machine learning. There are two typical definitions of thermal comfort: subjective thermal comfort representing the subjective perception of heat and objective thermal comfort calculated by the PMV formula. We used a subjective questionnaire and PMV formula to obtain the correct label for two kinds of thermal comfort, respectively. Among the three machine learning models, the random forest has 0.73 in MAE, which is suitable for estimating 7-level subjective thermal comfort, and the neural network has 0.47 in MAE, which is suitable for estimating objective thermal comfort. We investigated the estimation accuracy by changing the sensors' combinations. As a result, a small number of sensors could still roughly estimate human thermal comfort.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.308
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 An ideal self-adjusting environment requires adapting human thermal comfort automatically and continuously measuring the changes in human thermal comfort. According to the PMV (Predicted Mean Vote) model, human thermal comfort could be evaluated by human biometric data and environmental data. In this paper, we proposed a method to estimate human thermal comfort through a small number of wearable and environmental sensors based on machine learning. There are two typical definitions of thermal comfort: subjective thermal comfort representing the subjective perception of heat and objective thermal comfort calculated by the PMV formula. We used a subjective questionnaire and PMV formula to obtain the correct label for two kinds of thermal comfort, respectively. Among the three machine learning models, the random forest has 0.73 in MAE, which is suitable for estimating 7-level subjective thermal comfort, and the neural network has 0.47 in MAE, which is suitable for estimating objective thermal comfort. We investigated the estimation accuracy by changing the sensors' combinations. As a result, a small number of sensors could still roughly estimate human thermal comfort.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.308
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 64, 号 5, 発行日 2023-05-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:38:06.201655
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3