ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. デジタルプラクティス(TDP)
  3. Vol.4
  4. No.2

Multi-Speaker Identification with IoT Badges for Collaborative Learning Analysis

https://ipsj.ixsq.nii.ac.jp/records/225619
https://ipsj.ixsq.nii.ac.jp/records/225619
998dd6a8-ef58-4523-8639-3aefe581f9da
名前 / ファイル ライセンス アクション
IPSJ-TDP0402006.pdf IPSJ-TDP0402006.pdf (13.9 MB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2023-04-15
タイトル
タイトル Multi-Speaker Identification with IoT Badges for Collaborative Learning Analysis
タイトル
言語 en
タイトル Multi-Speaker Identification with IoT Badges for Collaborative Learning Analysis
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集号投稿論文] collaborative learning, Internet of Things (IoT), sensor networks, speaker identification, time synchronization
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属(英)
en
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Shunpei, Yamaguchi

× Shunpei, Yamaguchi

Shunpei, Yamaguchi

Search repository
Motoki, Nagano

× Motoki, Nagano

Motoki, Nagano

Search repository
Ritsuko, Oshima

× Ritsuko, Oshima

Ritsuko, Oshima

Search repository
Jun, Oshima

× Jun, Oshima

Jun, Oshima

Search repository
Takuya, Fujihashi

× Takuya, Fujihashi

Takuya, Fujihashi

Search repository
Shunsuke, Saruwatari

× Shunsuke, Saruwatari

Shunsuke, Saruwatari

Search repository
Takashi, Watanabe

× Takashi, Watanabe

Takashi, Watanabe

Search repository
著者名(英) Shunpei, Yamaguchi

× Shunpei, Yamaguchi

en Shunpei, Yamaguchi

Search repository
Motoki, Nagano

× Motoki, Nagano

en Motoki, Nagano

Search repository
Ritsuko, Oshima

× Ritsuko, Oshima

en Ritsuko, Oshima

Search repository
Jun, Oshima

× Jun, Oshima

en Jun, Oshima

Search repository
Takuya, Fujihashi

× Takuya, Fujihashi

en Takuya, Fujihashi

Search repository
Shunsuke, Saruwatari

× Shunsuke, Saruwatari

en Shunsuke, Saruwatari

Search repository
Takashi, Watanabe

× Takashi, Watanabe

en Takashi, Watanabe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Collaborative learning fosters the ability to creatively solve problems in collaboration with other learners. Researchers in learning science have transcribed learners' speech to qualitatively analyze collaborative learning to reveal various patterns that increase learning performance. Although prior studies have identified speakers to support the process of transcription, those studies were limited in simultaneously identifying multiple speakers. We propose a novel speaker-identification algorithm that can simultaneously recognize multiple speakers using business-card-type sensors. The algorithm can remove ambient noise with low-cost sensors and still identify multiple simultaneous speakers. The experimental evaluations show that the algorithm accurately identifies simultaneous multiple speakers in a multi-person activity under conditions with varying numbers of users, environmental noise, and users' short utterances.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Collaborative learning fosters the ability to creatively solve problems in collaboration with other learners. Researchers in learning science have transcribed learners' speech to qualitatively analyze collaborative learning to reveal various patterns that increase learning performance. Although prior studies have identified speakers to support the process of transcription, those studies were limited in simultaneously identifying multiple speakers. We propose a novel speaker-identification algorithm that can simultaneously recognize multiple speakers using business-card-type sensors. The algorithm can remove ambient noise with low-cost sensors and still identify multiple simultaneous speakers. The experimental evaluations show that the algorithm accurately identifies simultaneous multiple speakers in a multi-person activity under conditions with varying numbers of users, environmental noise, and users' short utterances.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894091
書誌情報 情報処理学会論文誌デジタルプラクティス(TDP)

巻 4, 号 2, 発行日 2023-04-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6484
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:44:30.877641
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3