ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.16
  4. No.2

Keyphrase-based Refinement Functions for Efficient Improvement on Document-Topic Association in Human-in-the-Loop Topic Models

https://ipsj.ixsq.nii.ac.jp/records/225589
https://ipsj.ixsq.nii.ac.jp/records/225589
6b2aad7a-838b-43b4-ad5b-d334f03a1ff1
名前 / ファイル ライセンス アクション
IPSJ-TOD1602006.pdf IPSJ-TOD1602006.pdf (1.7 MB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2023-04-14
タイトル
タイトル Keyphrase-based Refinement Functions for Efficient Improvement on Document-Topic Association in Human-in-the-Loop Topic Models
タイトル
言語 en
タイトル Keyphrase-based Refinement Functions for Efficient Improvement on Document-Topic Association in Human-in-the-Loop Topic Models
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] topic models, latent dirichlet allocation, human-in-the-loop topic modeling, keyphrase generation model
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
University of Tsukuba
著者所属
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者名 Khan, Muhammad Haseeb Ur Rehman

× Khan, Muhammad Haseeb Ur Rehman

Khan, Muhammad Haseeb Ur Rehman

Search repository
Kei, Wakabayashi

× Kei, Wakabayashi

Kei, Wakabayashi

Search repository
著者名(英) Khan, Muhammad Haseeb Ur Rehman

× Khan, Muhammad Haseeb Ur Rehman

en Khan, Muhammad Haseeb Ur Rehman

Search repository
Kei, Wakabayashi

× Kei, Wakabayashi

en Kei, Wakabayashi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Human-in-the-loop topic models allow users to encode feedback to modify topic models without changing the core machinery of the topic models. Basic refinement functions have been proposed in prior works in which the main focus was to modify the top word lists of topics, e.g., add a single word in a topic having distribution over a large vocabulary set. In this work, we point out that such refinements have very little to no effect on document-topic associations, which are rather important in practical applications, and propose keyphrase-based refinement functions that are designed to improve document-topic associations efficiently. In the proposed method, these keyphrases are extracted by using a neural keyphrase generation model that summarizes a document in a few keyphrases which are human-interpretable representations of each given document. The proposed refinement functions are as simple as word-based refinements but directly modify the document-topic association in functionality by referring to the keyphrase representations of documents. To examine the capability of the refinement functions for revising topic models, we conducted experiments based on a simulated user that has a fixed preference for the document-topic association using 20Newsgroups dataset. Our results showed that the proposed keyphrase-based refinements outperform the basic word-based refinements in terms of the F1 score computed on the fixed preference.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Human-in-the-loop topic models allow users to encode feedback to modify topic models without changing the core machinery of the topic models. Basic refinement functions have been proposed in prior works in which the main focus was to modify the top word lists of topics, e.g., add a single word in a topic having distribution over a large vocabulary set. In this work, we point out that such refinements have very little to no effect on document-topic associations, which are rather important in practical applications, and propose keyphrase-based refinement functions that are designed to improve document-topic associations efficiently. In the proposed method, these keyphrases are extracted by using a neural keyphrase generation model that summarizes a document in a few keyphrases which are human-interpretable representations of each given document. The proposed refinement functions are as simple as word-based refinements but directly modify the document-topic association in functionality by referring to the keyphrase representations of documents. To examine the capability of the refinement functions for revising topic models, we conducted experiments based on a simulated user that has a fixed preference for the document-topic association using 20Newsgroups dataset. Our results showed that the proposed keyphrase-based refinements outperform the basic word-based refinements in terms of the F1 score computed on the fixed preference.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 16, 号 2, 発行日 2023-04-14
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:44:46.914826
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3