ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2023
  4. 2023-QS-008

Quantum algorithm for position weight matrix matching

https://ipsj.ixsq.nii.ac.jp/records/225068
https://ipsj.ixsq.nii.ac.jp/records/225068
11217a48-ed0a-41e7-b864-8bf36993cad6
名前 / ファイル ライセンス アクション
IPSJ-QS23008032.pdf IPSJ-QS23008032.pdf (720.1 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-03-06
タイトル
タイトル Quantum algorithm for position weight matrix matching
タイトル
言語 en
タイトル Quantum algorithm for position weight matrix matching
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Center for Quantum Information and Quantum Biology, Osaka University
著者所属
Department of Applied Physics and Physico-Informatics, Keio University/Quantum Computing Center, Keio University
著者所属
Department of Biosciences and Informatics, Keio University/Quantum Computing Center, Keio University
著者所属(英)
en
Center for Quantum Information and Quantum Biology, Osaka University
著者所属(英)
en
Department of Applied Physics and Physico-Informatics, Keio University / Quantum Computing Center, Keio University
著者所属(英)
en
Department of Biosciences and Informatics, Keio University / Quantum Computing Center, Keio University
著者名 Koichi, Miyamoto

× Koichi, Miyamoto

Koichi, Miyamoto

Search repository
Naoki, Yamamoto

× Naoki, Yamamoto

Naoki, Yamamoto

Search repository
Yasubumi, Sakakibara

× Yasubumi, Sakakibara

Yasubumi, Sakakibara

Search repository
著者名(英) Koichi, Miyamoto

× Koichi, Miyamoto

en Koichi, Miyamoto

Search repository
Naoki, Yamamoto

× Naoki, Yamamoto

en Naoki, Yamamoto

Search repository
Yasubumi, Sakakibara

× Yasubumi, Sakakibara

en Yasubumi, Sakakibara

Search repository
論文抄録
内容記述タイプ Other
内容記述 We propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence such as DNA and protein that have high scores defined by the PWM and are thus of informational importance related to biological function. The two proposed algorithms, the naive iteration method and the Monte-Carlo-based method, output matched segments, given the oracular accesses to the entries in the biological sequence and the PWM. The former uses quantum amplitude amplification (QAA) for sequence motif search, resulting in the query complexity scaling on the sequence length n, the sequence motif length m and the number of the PWMs K as O(m√Kn), which means speedup over existing classical algorithms with respect to n and K. The latter also uses QAA, and further, quantum Monte Carlo integration (QMCI) for segment score calculation instead of iterative arithmetic operations in the naive iteration method; then it provides the additional speedup with respect to m in some situation. As a drawback, these algorithms use quantum random access memories and their initialization takes O(n) time. Nevertheless, our algorithms keep the advantage especially when we search matches in a sequence for many PWMs in parallel.
論文抄録(英)
内容記述タイプ Other
内容記述 We propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence such as DNA and protein that have high scores defined by the PWM and are thus of informational importance related to biological function. The two proposed algorithms, the naive iteration method and the Monte-Carlo-based method, output matched segments, given the oracular accesses to the entries in the biological sequence and the PWM. The former uses quantum amplitude amplification (QAA) for sequence motif search, resulting in the query complexity scaling on the sequence length n, the sequence motif length m and the number of the PWMs K as O(m√Kn), which means speedup over existing classical algorithms with respect to n and K. The latter also uses QAA, and further, quantum Monte Carlo integration (QMCI) for segment score calculation instead of iterative arithmetic operations in the naive iteration method; then it provides the additional speedup with respect to m in some situation. As a drawback, these algorithms use quantum random access memories and their initialization takes O(n) time. Nevertheless, our algorithms keep the advantage especially when we search matches in a sequence for many PWMs in parallel.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2023-QS-8, 号 32, p. 1-10, 発行日 2023-03-06
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:56:13.010828
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3