ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2023
  4. 2023-QS-008

Quantum-Relaxation Based Optimization Algorithms: Experimental Analysis and Theoretical Extensions

https://ipsj.ixsq.nii.ac.jp/records/225048
https://ipsj.ixsq.nii.ac.jp/records/225048
b8cca766-2ba5-48c6-81d1-d068ea7bf099
名前 / ファイル ライセンス アクション
IPSJ-QS23008015.pdf IPSJ-QS23008015.pdf (751.7 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-03-06
タイトル
タイトル Quantum-Relaxation Based Optimization Algorithms: Experimental Analysis and Theoretical Extensions
タイトル
言語 en
タイトル Quantum-Relaxation Based Optimization Algorithms: Experimental Analysis and Theoretical Extensions
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Dept. of Computer Science, The Univ. of Tokyo
著者所属
Dept. of Computer Science, The Univ. of Tokyo/IBM Quantum, IBM Japan/Quantum Computing Center, Keio University
著者所属
Dept. of Computer Science, The Univ. of Tokyo
著者所属
Dept. of Computer Science, The Univ. of Tokyo
著者所属(英)
en
Dept. of Computer Science, The Univ. of Tokyo
著者所属(英)
en
Dept. of Computer Science, The Univ. of Tokyo / IBM Quantum, IBM Japan / Quantum Computing Center, Keio University
著者所属(英)
en
Dept. of Computer Science, The Univ. of Tokyo
著者所属(英)
en
Dept. of Computer Science, The Univ. of Tokyo
著者名 Kosei, Teramoto

× Kosei, Teramoto

Kosei, Teramoto

Search repository
Rudy, Raymond

× Rudy, Raymond

Rudy, Raymond

Search repository
Eyuri, Wakakuwa

× Eyuri, Wakakuwa

Eyuri, Wakakuwa

Search repository
Hiroshi, Imai

× Hiroshi, Imai

Hiroshi, Imai

Search repository
著者名(英) Kosei, Teramoto

× Kosei, Teramoto

en Kosei, Teramoto

Search repository
Rudy, Raymond

× Rudy, Raymond

en Rudy, Raymond

Search repository
Eyuri, Wakakuwa

× Eyuri, Wakakuwa

en Eyuri, Wakakuwa

Search repository
Hiroshi, Imai

× Hiroshi, Imai

en Hiroshi, Imai

Search repository
論文抄録
内容記述タイプ Other
内容記述 Quantum Random Access Optimizer (QRAO) is a quantum-relaxation based optimization algorithm proposed by Fuller et al. (2021) that utilizes Quantum Random Access Code (QRAC) to encode multiple variables of binary optimization in a single qubit. Differing from standard quantum optimizers such as QAOA, it utilizes the eigenstates of local Hamiltonians that are not diagonal in the computational basis. There are indications that quantum entanglement may not be needed to solve binary optimization problems with standard quantum optimizers because the maximal eigenstates of diagonal Hamiltonians include classical states. QRAO with a bit-to-qubit compression ratio of 3x has an approximation ratio for the maximum cut problem as 0.555, and there is a trade-off between space efficiency and approximability. In this study, we (1) experimentally analyze QRAO (especially the role of entanglement) and (2) theoretically extend the quantum relaxation to obtain new approximation and compression tradeoffs.
論文抄録(英)
内容記述タイプ Other
内容記述 Quantum Random Access Optimizer (QRAO) is a quantum-relaxation based optimization algorithm proposed by Fuller et al. (2021) that utilizes Quantum Random Access Code (QRAC) to encode multiple variables of binary optimization in a single qubit. Differing from standard quantum optimizers such as QAOA, it utilizes the eigenstates of local Hamiltonians that are not diagonal in the computational basis. There are indications that quantum entanglement may not be needed to solve binary optimization problems with standard quantum optimizers because the maximal eigenstates of diagonal Hamiltonians include classical states. QRAO with a bit-to-qubit compression ratio of 3x has an approximation ratio for the maximum cut problem as 0.555, and there is a trade-off between space efficiency and approximability. In this study, we (1) experimentally analyze QRAO (especially the role of entanglement) and (2) theoretically extend the quantum relaxation to obtain new approximation and compression tradeoffs.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2023-QS-8, 号 15, p. 1-9, 発行日 2023-03-06
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 12:56:43.591671
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3