ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2023
  4. 2023-CVIM-233

Dynamic Weight Scheduling for Long-tailed Visual Recognition

https://ipsj.ixsq.nii.ac.jp/records/224591
https://ipsj.ixsq.nii.ac.jp/records/224591
61d2f8b8-ac8f-43e8-9f28-ded1dabb6e2c
名前 / ファイル ライセンス アクション
IPSJ-CVIM23233025.pdf IPSJ-CVIM23233025.pdf (1.4 MB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-02-23
タイトル
タイトル Dynamic Weight Scheduling for Long-tailed Visual Recognition
タイトル
言語 en
タイトル Dynamic Weight Scheduling for Long-tailed Visual Recognition
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Ritsumeikan University
著者所属
Hitotsubashi University
著者所属
Ritsumeikan University
著者所属(英)
en
Ritsumeikan University
著者所属(英)
en
Hitotsubashi University
著者所属(英)
en
Ritsumeikan University
著者名 Xinyuan, Li

× Xinyuan, Li

Xinyuan, Li

Search repository
Yu, Wang

× Yu, Wang

Yu, Wang

Search repository
Jien, Kato

× Jien, Kato

Jien, Kato

Search repository
著者名(英) Xinyuan, Li

× Xinyuan, Li

en Xinyuan, Li

Search repository
Yu, Wang

× Yu, Wang

en Yu, Wang

Search repository
Jien, Kato

× Jien, Kato

en Jien, Kato

Search repository
論文抄録
内容記述タイプ Other
内容記述 To address the issue of static re-weighting methods negatively impacting the accuracy of head categories in long-tailed image recognition tasks, this paper introduces a dynamic re-weighting method that adjusts the weight assigned to a specific category based on the number of samples that have been used for that category. This weighting scheme increases and then decreases in proportion to the sample usage. Additionally, the use of our head-to-tail loss helps control the evolution of weights, enabling the model to progressively shift its focus from head categories to tail categories. Experiments on long-tailed CIFAR/ImageNet datasets demonstrate that this approach outperforms static re-weighting methods and improves the accuracy of tail categories without diminishing the accuracy of head categories. In addition, we introduce our dynamic re-weighting method in two-stage training and discuss the advantages and limitations of our method.
論文抄録(英)
内容記述タイプ Other
内容記述 To address the issue of static re-weighting methods negatively impacting the accuracy of head categories in long-tailed image recognition tasks, this paper introduces a dynamic re-weighting method that adjusts the weight assigned to a specific category based on the number of samples that have been used for that category. This weighting scheme increases and then decreases in proportion to the sample usage. Additionally, the use of our head-to-tail loss helps control the evolution of weights, enabling the model to progressively shift its focus from head categories to tail categories. Experiments on long-tailed CIFAR/ImageNet datasets demonstrate that this approach outperforms static re-weighting methods and improves the accuracy of tail categories without diminishing the accuracy of head categories. In addition, we introduce our dynamic re-weighting method in two-stage training and discuss the advantages and limitations of our method.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2023-CVIM-233, 号 25, p. 1-4, 発行日 2023-02-23
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:05:26.012444
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3