| Item type |
SIG Technical Reports(1) |
| 公開日 |
2023-02-21 |
| タイトル |
|
|
タイトル |
Personality Recognition on Dyadic Interactions with Representation Learning |
| タイトル |
|
|
言語 |
en |
|
タイトル |
Personality Recognition on Dyadic Interactions with Representation Learning |
| 言語 |
|
|
言語 |
eng |
| キーワード |
|
|
主題Scheme |
Other |
|
主題 |
ショート・オーラル2 |
| 資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
| 著者所属 |
|
|
|
Tokyo Institute of Technology |
| 著者所属 |
|
|
|
Yokohama City University |
| 著者所属 |
|
|
|
Tokyo Institute of Technology |
| 著者所属(英) |
|
|
|
en |
|
|
Tokyo Institute of Technology |
| 著者所属(英) |
|
|
|
en |
|
|
Yokohama City University |
| 著者所属(英) |
|
|
|
en |
|
|
Tokyo Institute of Technology |
| 著者名 |
Nathania, Nah
Takafumi, Koshinaka
Koichi, Shinoda
|
| 著者名(英) |
Nathania, Nah
Takafumi, Koshinaka
Koichi, Shinoda
|
| 論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Personality computing explores methods of automatically measuring human traits to create a better understanding of the human psyche and thought processes. We examine conversations and interactions in dyadic environments through the perspective of representation learning to capture the psychological traits that compose a target's personality profile. We propose a bimodal speech-text model to predict scores for personality traits at a sentence level for the speakers using disentangled representations on speech and text. Our model outperforms current personality prediction methods using visual features and/or metadata on the UDIVA dataset's English subset. |
| 論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Personality computing explores methods of automatically measuring human traits to create a better understanding of the human psyche and thought processes. We examine conversations and interactions in dyadic environments through the perspective of representation learning to capture the psychological traits that compose a target's personality profile. We propose a bimodal speech-text model to predict scores for personality traits at a sentence level for the speakers using disentangled representations on speech and text. Our model outperforms current personality prediction methods using visual features and/or metadata on the UDIVA dataset's English subset. |
| 書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10442647 |
| 書誌情報 |
研究報告音声言語情報処理(SLP)
巻 2023-SLP-146,
号 61,
p. 1-6,
発行日 2023-02-21
|
| ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8663 |
| Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
| 出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |