ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音声言語情報処理(SLP)
  3. 2023
  4. 2023-SLP-146

What Do Self-Supervised Speech Representation Models Know?-A Layer-Wise Analysis-

https://ipsj.ixsq.nii.ac.jp/records/224455
https://ipsj.ixsq.nii.ac.jp/records/224455
4d79f12d-6540-40c1-a524-5706ed01db81
名前 / ファイル ライセンス アクション
IPSJ-SLP23146058.pdf IPSJ-SLP23146058.pdf (896.7 kB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
SLP:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-02-21
タイトル
タイトル What Do Self-Supervised Speech Representation Models Know?-A Layer-Wise Analysis-
タイトル
言語 en
タイトル What Do Self-Supervised Speech Representation Models Know?-A Layer-Wise Analysis-
言語
言語 eng
キーワード
主題Scheme Other
主題 招待講演3
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Toyota Technological Institute at Chicago
著者所属
Toyota Technological Institute at Chicago
著者所属
Toyota Technological Institute at Chicago
著者所属
Toyota Technological Institute at Chicago
著者所属(英)
en
Toyota Technological Institute at Chicago
著者所属(英)
en
Toyota Technological Institute at Chicago
著者所属(英)
en
Toyota Technological Institute at Chicago
著者所属(英)
en
Toyota Technological Institute at Chicago
著者名 Karen, Livescu

× Karen, Livescu

Karen, Livescu

Search repository
Ankita, Pasad

× Ankita, Pasad

Ankita, Pasad

Search repository
Ju-Chieh, Chou

× Ju-Chieh, Chou

Ju-Chieh, Chou

Search repository
Bowen, Shi

× Bowen, Shi

Bowen, Shi

Search repository
著者名(英) Karen, Livescu

× Karen, Livescu

en Karen, Livescu

Search repository
Ankita, Pasad

× Ankita, Pasad

en Ankita, Pasad

Search repository
Ju-Chieh, Chou

× Ju-Chieh, Chou

en Ju-Chieh, Chou

Search repository
Bowen, Shi

× Bowen, Shi

en Bowen, Shi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Self-supervised speech representations have become ubiquitous in speech processing over the past few years. They have both improved the state of the art and made it feasible to learn speech models with very little labeled data. However, it is not well understood what linguistic information is encoded in pre-trained models and how best to apply them to downstream tasks. In this talk I will describe recent work that begins to build an understanding of the layer-wise information learned by pre-trained speech models. We consider a number of popular pre-trained models and investigate the extent to which their layers encode spectral, phonetic, and word-level information. The results of these analyses also suggest some ways to improve or simplify the application of pre-trained models for downstream tasks.
論文抄録(英)
内容記述タイプ Other
内容記述 Self-supervised speech representations have become ubiquitous in speech processing over the past few years. They have both improved the state of the art and made it feasible to learn speech models with very little labeled data. However, it is not well understood what linguistic information is encoded in pre-trained models and how best to apply them to downstream tasks. In this talk I will describe recent work that begins to build an understanding of the layer-wise information learned by pre-trained speech models. We consider a number of popular pre-trained models and investigate the extent to which their layers encode spectral, phonetic, and word-level information. The results of these analyses also suggest some ways to improve or simplify the application of pre-trained models for downstream tasks.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10442647
書誌情報 研究報告音声言語情報処理(SLP)

巻 2023-SLP-146, 号 58, p. 1-1, 発行日 2023-02-21
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8663
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:08:48.129665
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3