ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.64
  3. No.2

Estimating and Visualizing Persuasiveness of Participants in Group Discussions

https://ipsj.ixsq.nii.ac.jp/records/224363
https://ipsj.ixsq.nii.ac.jp/records/224363
e388c72a-2466-4c2a-ae79-6d2525a8f8a8
名前 / ファイル ライセンス アクション
IPSJ-JNL6402014.pdf IPSJ-JNL6402014.pdf (1.1 MB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2023-02-15
タイトル
タイトル Estimating and Visualizing Persuasiveness of Participants in Group Discussions
タイトル
言語 en
タイトル Estimating and Visualizing Persuasiveness of Participants in Group Discussions
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:インタラクションの理解および基盤・応用技術] datasets, neural networks, gaze detection, text tagging
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Seikei University
著者所属
Seikei University
著者所属
NTT Human Informatics Laboratories
著者所属
Seikei University
著者所属
NTT Human Informatics Laboratories
著者所属
NTT Human Informatics Laboratories
著者所属
NTT Human Informatics Laboratories
著者所属(英)
en
Seikei University
著者所属(英)
en
Seikei University
著者所属(英)
en
NTT Human Informatics Laboratories
著者所属(英)
en
Seikei University
著者所属(英)
en
NTT Human Informatics Laboratories
著者所属(英)
en
NTT Human Informatics Laboratories
著者所属(英)
en
NTT Human Informatics Laboratories
著者名 Atsushi, Ito

× Atsushi, Ito

Atsushi, Ito

Search repository
Yukiko, I. Nakano

× Yukiko, I. Nakano

Yukiko, I. Nakano

Search repository
Fumio, Nihei

× Fumio, Nihei

Fumio, Nihei

Search repository
Tatsuya, Sakato

× Tatsuya, Sakato

Tatsuya, Sakato

Search repository
Ryo, Ishii

× Ryo, Ishii

Ryo, Ishii

Search repository
Atsushi, Fukayama

× Atsushi, Fukayama

Atsushi, Fukayama

Search repository
Takao, Nakamura

× Takao, Nakamura

Takao, Nakamura

Search repository
著者名(英) Atsushi, Ito

× Atsushi, Ito

en Atsushi, Ito

Search repository
Yukiko, I. Nakano

× Yukiko, I. Nakano

en Yukiko, I. Nakano

Search repository
Fumio, Nihei

× Fumio, Nihei

en Fumio, Nihei

Search repository
Tatsuya, Sakato

× Tatsuya, Sakato

en Tatsuya, Sakato

Search repository
Ryo, Ishii

× Ryo, Ishii

en Ryo, Ishii

Search repository
Atsushi, Fukayama

× Atsushi, Fukayama

en Atsushi, Fukayama

Search repository
Takao, Nakamura

× Takao, Nakamura

en Takao, Nakamura

Search repository
論文抄録
内容記述タイプ Other
内容記述 In group discussions, each participant has his/her own opinion, and if necessary, tries to persuade other participants to reach an agreement. Therefore, persuasiveness is an important skill for communicating with others. Based on this motivation, this study aims to estimate the persuasiveness of group discussion participants. First, human annotators rated the level of persuasiveness of each participant in group discussions among four people. We then created multimodal and multiparty models for estimating persuasiveness of a participant using speech, language, and visual (head pose) features using gated recurrent unit (GRU)-based neural network. In our experiment, in estimating the highest persuasive participant among the group, the performance of the proposed method was 76% in accuracy. In the binary classification task for estimating high or low persuasiveness participants among the group, the performance of the best performing multimodal multiparty model achieved 80% in accuracy. The experimental results show that multimodal models are better than unimodal models, and multiparty features contribute to improving the model performance. As an application of the proposed method, we implemented a meeting browser with persuasiveness visualization. The level of persuasiveness is visually indicated using the background color of each participant's timeline. Finally, we conducted a user study for our meeting browser, and found that the persuasiveness visualization helps the subjects grasp the flow of the discussion in a shorter time compared to a browser without persuasiveness visualization.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.34
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 In group discussions, each participant has his/her own opinion, and if necessary, tries to persuade other participants to reach an agreement. Therefore, persuasiveness is an important skill for communicating with others. Based on this motivation, this study aims to estimate the persuasiveness of group discussion participants. First, human annotators rated the level of persuasiveness of each participant in group discussions among four people. We then created multimodal and multiparty models for estimating persuasiveness of a participant using speech, language, and visual (head pose) features using gated recurrent unit (GRU)-based neural network. In our experiment, in estimating the highest persuasive participant among the group, the performance of the proposed method was 76% in accuracy. In the binary classification task for estimating high or low persuasiveness participants among the group, the performance of the best performing multimodal multiparty model achieved 80% in accuracy. The experimental results show that multimodal models are better than unimodal models, and multiparty features contribute to improving the model performance. As an application of the proposed method, we implemented a meeting browser with persuasiveness visualization. The level of persuasiveness is visually indicated using the background color of each participant's timeline. Finally, we conducted a user study for our meeting browser, and found that the persuasiveness visualization helps the subjects grasp the flow of the discussion in a shorter time compared to a browser without persuasiveness visualization.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.34
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 64, 号 2, 発行日 2023-02-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:10:46.374233
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3