ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. アルゴリズム(AL)
  3. 2023
  4. 2023-AL-191

Heuristic computation of exact treewidth

https://ipsj.ixsq.nii.ac.jp/records/223366
https://ipsj.ixsq.nii.ac.jp/records/223366
e3e030ae-1c36-4b6e-b405-71fe1196c837
名前 / ファイル ライセンス アクション
IPSJ-AL23191003.pdf IPSJ-AL23191003.pdf (707.9 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2023-01-12
タイトル
タイトル Heuristic computation of exact treewidth
タイトル
言語 en
タイトル Heuristic computation of exact treewidth
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Meiji University
著者所属(英)
en
Meiji University
著者名 Hisao, Tamaki

× Hisao, Tamaki

Hisao, Tamaki

Search repository
著者名(英) Hisao, Tamaki

× Hisao, Tamaki

en Hisao, Tamaki

Search repository
論文抄録
内容記述タイプ Other
内容記述 We are interested in computing the treewidth tw(G) of a given graph G. Our approach is to design heuristic algorithms for computing a sequence of improving upper bounds and a sequence of improving lower bounds, which would hopefully converge to tw(G) from both sides. The upper bound algorithm extends and simplifies the present author's unpublished work on a heuristic use of the dynamic programming algorithm for deciding treewidth due to Bouchitte and Todinca. The lower bound algorithm is based on the well-known fact that, for every minor H of G, we have tw(H) ≦ tw(G). Starting from a greedily computed minor H0 of G, the algorithm tries to construct a sequence of minors H0, H1, . . .Hk with tw(Hi) < tw(Hi+1) for 0 ≦ i < k and hopefully tw(Hk) = tw(G). We have implemented a treewidth solver based on this approach and have evaluated it on the bonus instances from the exact treewidth track of PACE 2017 algorithm implementation challenge. The results show that our approach is extremely effective in tackling instances that are hard for conventional solvers. Our solver has an additional advantage over conventional ones in that it attaches a compact certificate to the lower bound it computes.
論文抄録(英)
内容記述タイプ Other
内容記述 We are interested in computing the treewidth tw(G) of a given graph G. Our approach is to design heuristic algorithms for computing a sequence of improving upper bounds and a sequence of improving lower bounds, which would hopefully converge to tw(G) from both sides. The upper bound algorithm extends and simplifies the present author's unpublished work on a heuristic use of the dynamic programming algorithm for deciding treewidth due to Bouchitte and Todinca. The lower bound algorithm is based on the well-known fact that, for every minor H of G, we have tw(H) ≦ tw(G). Starting from a greedily computed minor H0 of G, the algorithm tries to construct a sequence of minors H0, H1, . . .Hk with tw(Hi) < tw(Hi+1) for 0 ≦ i < k and hopefully tw(Hk) = tw(G). We have implemented a treewidth solver based on this approach and have evaluated it on the bonus instances from the exact treewidth track of PACE 2017 algorithm implementation challenge. The results show that our approach is extremely effective in tackling instances that are hard for conventional solvers. Our solver has an additional advantage over conventional ones in that it attaches a compact certificate to the lower bound it computes.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN1009593X
書誌情報 研究報告アルゴリズム(AL)

巻 2023-AL-191, 号 3, p. 1-6, 発行日 2023-01-12
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8566
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:25:51.361654
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3