ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. コンピュータセキュリティシンポジウム
  4. 2022

Risk Evaluation of LDP scheme LoPub against Variational Autoencoder

https://ipsj.ixsq.nii.ac.jp/records/223096
https://ipsj.ixsq.nii.ac.jp/records/223096
e41b22d0-56bb-4aef-a39d-21796eb0b649
名前 / ファイル ライセンス アクション
IPSJ-CSS2022041.pdf IPSJ-CSS2022041.pdf (1.2 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2022-10-17
タイトル
タイトル Risk Evaluation of LDP scheme LoPub against Variational Autoencoder
タイトル
言語 en
タイトル Risk Evaluation of LDP scheme LoPub against Variational Autoencoder
言語
言語 eng
キーワード
主題Scheme Other
主題 Local Differential Privacy, Variational Auto-Encoder, LASSO regression
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Meiji University
著者所属
Meiji University
著者所属(英)
en
Meiji University
著者所属(英)
en
Meiji University
著者名 Hernandez-Matamoros, Andres

× Hernandez-Matamoros, Andres

Hernandez-Matamoros, Andres

Search repository
Kikuchi, Hiroaki

× Kikuchi, Hiroaki

Kikuchi, Hiroaki

Search repository
著者名(英) Andres, Hernandez-Matamoros

× Andres, Hernandez-Matamoros

en Andres, Hernandez-Matamoros

Search repository
Hiroaki, Kikuchi

× Hiroaki, Kikuchi

en Hiroaki, Kikuchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 When we use a service which has an internet connection or not, the concern of how we can protect our data appears. Besides, the company that offers services wants to use our information to improve the service. Local Differential Privacy is applied to satisfy users' and companies' requirements about privacy concerns. This paper shows a risk Evaluation of LoPub, an LDP scheme. We show the results when the Central Server uses VAE instead uses the LoPub proposal. The results show that only a single VAE model performs well in a dataset with low cardinality on the attributes. Furthermore, it clears the way to continue researching VAE in LDP so that VAE can be applied to high cardinality datasets.
論文抄録(英)
内容記述タイプ Other
内容記述 When we use a service which has an internet connection or not, the concern of how we can protect our data appears. Besides, the company that offers services wants to use our information to improve the service. Local Differential Privacy is applied to satisfy users' and companies' requirements about privacy concerns. This paper shows a risk Evaluation of LoPub, an LDP scheme. We show the results when the Central Server uses VAE instead uses the LoPub proposal. The results show that only a single VAE model performs well in a dataset with low cardinality on the attributes. Furthermore, it clears the way to continue researching VAE in LDP so that VAE can be applied to high cardinality datasets.
書誌情報 コンピュータセキュリティシンポジウム2022論文集

p. 289-296, 発行日 2022-10-17
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:31:05.190549
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3