ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. プログラミング(PRO)
  3. Vol.15
  4. No.5

Conjuring Fusion Laws via Relational Calculus

https://ipsj.ixsq.nii.ac.jp/records/222857
https://ipsj.ixsq.nii.ac.jp/records/222857
577e080d-e9d5-4a4b-8316-bf93c31fd876
名前 / ファイル ライセンス アクション
IPSJ-TPRO1505002.pdf IPSJ-TPRO1505002.pdf (208.6 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2022-12-15
タイトル
タイトル Conjuring Fusion Laws via Relational Calculus
タイトル
言語 en
タイトル Conjuring Fusion Laws via Relational Calculus
言語
言語 eng
キーワード
主題Scheme Other
主題 [通常論文] free theorem, conjuring lemma, function fusion, relational calculus
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者名 Akimasa, Morihata

× Akimasa, Morihata

Akimasa, Morihata

Search repository
著者名(英) Akimasa, Morihata

× Akimasa, Morihata

en Akimasa, Morihata

Search repository
論文抄録
内容記述タイプ Other
内容記述 Wadler demonstrated that several laws, called “free theorems”, about polymorphic functions can be derived from their types alone. Free theorems form the foundations of many program transformations, including function fusions particularly. Walder's approach requires systematic but cumbersome reasoning, which makes it difficult for non-experts to apply. To alleviate this problem, Voigtländer proposed a conjuring lemma. This lemma derives free theorems from an expression containing polymorphic functions but whose type does not contain polymorphic type variables. Unfortunately, it cannot derive function fusion laws. In this work, we generalize the conjuring lemma on the basis of Bird and de Moor's relational calculus. This calculus uses non-deterministic computations for uniformly describing and thereby relating specifications and implementations. To make the generalized conjuring lemma easier to use, we develop simpler corollaries by borrowing intuitions from the worker/wrapper transformations. The effectiveness of our approach is demonstrated through experiments with the derivation of three well-known fusion laws. While the original conjuring lemma cannot derive any of them, the generalization can systematically derive all.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Wadler demonstrated that several laws, called “free theorems”, about polymorphic functions can be derived from their types alone. Free theorems form the foundations of many program transformations, including function fusions particularly. Walder's approach requires systematic but cumbersome reasoning, which makes it difficult for non-experts to apply. To alleviate this problem, Voigtländer proposed a conjuring lemma. This lemma derives free theorems from an expression containing polymorphic functions but whose type does not contain polymorphic type variables. Unfortunately, it cannot derive function fusion laws. In this work, we generalize the conjuring lemma on the basis of Bird and de Moor's relational calculus. This calculus uses non-deterministic computations for uniformly describing and thereby relating specifications and implementations. To make the generalized conjuring lemma easier to use, we develop simpler corollaries by borrowing intuitions from the worker/wrapper transformations. The effectiveness of our approach is demonstrated through experiments with the derivation of three well-known fusion laws. While the original conjuring lemma cannot derive any of them, the generalization can systematically derive all.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464814
書誌情報 情報処理学会論文誌プログラミング(PRO)

巻 15, 号 5, 発行日 2022-12-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7802
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:35:55.736697
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3