ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. オーディオビジュアル複合情報処理(AVM)
  3. 2022
  4. 2022-AVM-119

Locating the Fruit to Be Harvested and Estimating their Cut Positions from RGBD Images Acquired by a Camera Moved along a Fixed Path Using a Mask\nR-CNN Based Method

https://ipsj.ixsq.nii.ac.jp/records/222382
https://ipsj.ixsq.nii.ac.jp/records/222382
f6e8f6fd-3c95-4308-a4d2-a80576312600
名前 / ファイル ライセンス アクション
IPSJ-AVM22119009.pdf IPSJ-AVM22119009.pdf (2.1 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
AVM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-11-17
タイトル
タイトル Locating the Fruit to Be Harvested and Estimating their Cut Positions from RGBD Images Acquired by a Camera Moved along a Fixed Path Using a Mask\nR-CNN Based Method
タイトル
言語 en
タイトル Locating the Fruit to Be Harvested and Estimating their Cut Positions from RGBD Images Acquired by a Camera Moved along a Fixed Path Using a Mask\nR-CNN Based Method
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Dept. of Modern Mechanical Engineering, Waseda University
著者所属
Dept. of Modern Mechanical Engineering, Waseda University
著者所属
Dept. of Modern Mechanical Engineering, Waseda University
著者所属
Faculty of Science and Engineering, Waseda University
著者所属
Dept. of Modern Mechanical Engineering, Waseda University
著者所属
Dept. of Modern Mechanical Engineering, Waseda University
著者所属
Dept. of Modern Mechanical Engineering, Waseda University
著者所属
Sony Computer Science Laboratories, Inc.
著者所属
Sony Computer Science Laboratories, Inc.,
著者所属(英)
en
Dept. of Modern Mechanical Engineering, Waseda University
著者所属(英)
en
Dept. of Modern Mechanical Engineering, Waseda University
著者所属(英)
en
Dept. of Modern Mechanical Engineering, Waseda University
著者所属(英)
en
Faculty of Science and Engineering, Waseda University
著者所属(英)
en
Dept. of Modern Mechanical Engineering, Waseda University
著者所属(英)
en
Dept. of Modern Mechanical Engineering, Waseda University
著者所属(英)
en
Dept. of Modern Mechanical Engineering, Waseda University
著者所属(英)
en
Sony Computer Science Laboratories, Inc.
著者所属(英)
en
Sony Computer Science Laboratories, Inc.,
著者名 Wentao, Zhao

× Wentao, Zhao

Wentao, Zhao

Search repository
Jun, Ohya

× Jun, Ohya

Jun, Ohya

Search repository
Chanjin, Seo

× Chanjin, Seo

Chanjin, Seo

Search repository
Takuya, Otani

× Takuya, Otani

Takuya, Otani

Search repository
Taiga, Tanaka

× Taiga, Tanaka

Taiga, Tanaka

Search repository
Koki, Masaya

× Koki, Masaya

Koki, Masaya

Search repository
Atsuo, Takanishi

× Atsuo, Takanishi

Atsuo, Takanishi

Search repository
Shuntaro, Aotake

× Shuntaro, Aotake

Shuntaro, Aotake

Search repository
Masatoshi, Funabashi

× Masatoshi, Funabashi

Masatoshi, Funabashi

Search repository
著者名(英) Wentao, Zhao

× Wentao, Zhao

en Wentao, Zhao

Search repository
Jun, Ohya

× Jun, Ohya

en Jun, Ohya

Search repository
Chanjin, Seo

× Chanjin, Seo

en Chanjin, Seo

Search repository
Takuya, Otani

× Takuya, Otani

en Takuya, Otani

Search repository
Taiga, Tanaka

× Taiga, Tanaka

en Taiga, Tanaka

Search repository
Koki, Masaya

× Koki, Masaya

en Koki, Masaya

Search repository
Atsuo, Takanishi

× Atsuo, Takanishi

en Atsuo, Takanishi

Search repository
Shuntaro, Aotake

× Shuntaro, Aotake

en Shuntaro, Aotake

Search repository
Masatoshi, Funabashi

× Masatoshi, Funabashi

en Masatoshi, Funabashi

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper proposes a Mask R-CNN[1] based method for locating fruits (tomatoes and yellow bell peppers, etc.) and estimating the cutting positions from RGBD images acquired by a camera moved along a fixed path. After getting mask results of all fruits and pedicels (cutting positions), the proposed method judges the matching relationship between the located fruit and pedicel according to the distance between fruit and pedicel. Experimental results show the proposed method effectively detects the cutting position of each fruit. The method is also robust in complex environments. In addition, it turns out that the fixed path strategy is valid for avoiding obstacles and reaching the pedicel and cutting position accurately. A high harvesting success rate was achieved in a Gazebo based simulated environment.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper proposes a Mask R-CNN[1] based method for locating fruits (tomatoes and yellow bell peppers, etc.) and estimating the cutting positions from RGBD images acquired by a camera moved along a fixed path. After getting mask results of all fruits and pedicels (cutting positions), the proposed method judges the matching relationship between the located fruit and pedicel according to the distance between fruit and pedicel. Experimental results show the proposed method effectively detects the cutting position of each fruit. The method is also robust in complex environments. In addition, it turns out that the fixed path strategy is valid for avoiding obstacles and reaching the pedicel and cutting position accurately. A high harvesting success rate was achieved in a Gazebo based simulated environment.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438399
書誌情報 研究報告オーディオビジュアル複合情報処理(AVM)

巻 2022-AVM-119, 号 9, p. 1-6, 発行日 2022-11-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8582
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:46:09.642490
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3