ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.63
  3. No.11

Extraction of Feature Quantities Suitable for Distribution Visualization of Motion Capture Data

https://ipsj.ixsq.nii.ac.jp/records/222250
https://ipsj.ixsq.nii.ac.jp/records/222250
dc899c1f-739f-4e7d-8f09-0e1825c97912
名前 / ファイル ライセンス アクション
IPSJ-JNL6311010.pdf IPSJ-JNL6311010.pdf (523.0 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2022-11-15
タイトル
タイトル Extraction of Feature Quantities Suitable for Distribution Visualization of Motion Capture Data
タイトル
言語 en
タイトル Extraction of Feature Quantities Suitable for Distribution Visualization of Motion Capture Data
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文(テクニカルノート)] motion capture, motion characteristic, visualization, scatter plot, frequency domain
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Engineering Science, Akita University
著者所属(英)
en
Graduate School of Engineering Science, Akita University
著者名 Takeshi, Miura

× Takeshi, Miura

Takeshi, Miura

Search repository
著者名(英) Takeshi, Miura

× Takeshi, Miura

en Takeshi, Miura

Search repository
論文抄録
内容記述タイプ Other
内容記述 To handle a motion-capture (Mocap) data set such as a Mocap database, it is beneficial to grasp the overview of the motion-characteristic distribution of the set in advance. To easily grasp the overview, concisely visualizing the distribution using a scatter plot is effective. In this paper, we propose a new method to extract the feature quantities suitable for the above visualization from each of the Mocap data. The one-dimensional motion-speed time series is analyzed in the frequency domain. Consequently, two feature quantities representing the motion intensity and motion complexity are derived. It is shown in the scatter-plot-construction experiments that explicitly weighting each frequency value in the frequency domain is effective for extracting the characteristics specific to each motion category.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.778
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 To handle a motion-capture (Mocap) data set such as a Mocap database, it is beneficial to grasp the overview of the motion-characteristic distribution of the set in advance. To easily grasp the overview, concisely visualizing the distribution using a scatter plot is effective. In this paper, we propose a new method to extract the feature quantities suitable for the above visualization from each of the Mocap data. The one-dimensional motion-speed time series is analyzed in the frequency domain. Consequently, two feature quantities representing the motion intensity and motion complexity are derived. It is shown in the scatter-plot-construction experiments that explicitly weighting each frequency value in the frequency domain is effective for extracting the characteristics specific to each motion category.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.778
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 63, 号 11, 発行日 2022-11-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:48:39.533072
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3