ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ヒューマンコンピュータインタラクション(HCI)
  3. 2022
  4. 2022-HCI-200

Preliminary Investigation of Distance Estimation between Smartphones via Wi-Fi Round Trip Time

https://ipsj.ixsq.nii.ac.jp/records/222062
https://ipsj.ixsq.nii.ac.jp/records/222062
da5b0b2b-341e-4d9e-9e8b-c45368793544
名前 / ファイル ライセンス アクション
IPSJ-HCI22200016.pdf IPSJ-HCI22200016.pdf (510.4 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-11-01
タイトル
タイトル Preliminary Investigation of Distance Estimation between Smartphones via Wi-Fi Round Trip Time
タイトル
言語 en
タイトル Preliminary Investigation of Distance Estimation between Smartphones via Wi-Fi Round Trip Time
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Yuqiao, Wang

× Yuqiao, Wang

Yuqiao, Wang

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
著者名(英) Yuqiao, Wang

× Yuqiao, Wang

en Yuqiao, Wang

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Estimating the physical distance between mobile devices such as smartphones with their Wi-Fi modules in an indoor environment has many potential real-world applications such as enhancing indoor navigation, analyzing and discovering communities, Wi-Fi geo-fencing, etc. Such distance estimation tasks have been conducted using Received Signal Strength Indication (RSSI), which leverages the strengths of signals from nearby Wi-Fi Access Points (APs). However, the imprecision of RSSI measurements has limited the performance of the RSSI-based methods. Recently, IEEE 802.11mc introduced Wi-Fi Round Trip Time (RTT) protocol, which enables distance estimation between devices and nearby APs by calculating the time-of-flight of signals, and has greatly improved the accuracy of indoor ranging. Therefore, this study presents a novel method for distance estimation between devices using Wi-Fi RTT, leveraging a graph neural network (GNN) to fully capture the geometric information among smartphones and nearby APs.
論文抄録(英)
内容記述タイプ Other
内容記述 Estimating the physical distance between mobile devices such as smartphones with their Wi-Fi modules in an indoor environment has many potential real-world applications such as enhancing indoor navigation, analyzing and discovering communities, Wi-Fi geo-fencing, etc. Such distance estimation tasks have been conducted using Received Signal Strength Indication (RSSI), which leverages the strengths of signals from nearby Wi-Fi Access Points (APs). However, the imprecision of RSSI measurements has limited the performance of the RSSI-based methods. Recently, IEEE 802.11mc introduced Wi-Fi Round Trip Time (RTT) protocol, which enables distance estimation between devices and nearby APs by calculating the time-of-flight of signals, and has greatly improved the accuracy of indoor ranging. Therefore, this study presents a novel method for distance estimation between devices using Wi-Fi RTT, leveraging a graph neural network (GNN) to fully capture the geometric information among smartphones and nearby APs.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA1221543X
書誌情報 研究報告ヒューマンコンピュータインタラクション(HCI)

巻 2022-HCI-200, 号 16, p. 1-6, 発行日 2022-11-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8760
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:52:44.429066
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3