ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 全国大会
  2. 84回
  3. 人工知能と認知科学

Visualization of the performance of Rainbow DQN in playing Atari games

https://ipsj.ixsq.nii.ac.jp/records/221024
https://ipsj.ixsq.nii.ac.jp/records/221024
5654b73d-42a8-40ea-aaed-859e6bef9089
名前 / ファイル ライセンス アクション
IPSJ-Z84-7T-08.pdf IPSJ-Z84-7T-08.pdf (451.9 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
Item type National Convention(1)
公開日 2022-02-17
タイトル
タイトル Visualization of the performance of Rainbow DQN in playing Atari games
言語
言語 eng
キーワード
主題Scheme Other
主題 人工知能と認知科学
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
早大
著者名 Renke, Liu

× Renke, Liu

Renke, Liu

Search repository
論文抄録
内容記述タイプ Other
内容記述 Deep learning has been widely applied to various fields in a recent decade, however most of them aim at solving specific problems. Deep reinforcement learning (DRL) is a combination of deep learning and reinforcement learning, which uses neural networks to learn from a predetermined reward function based on the environmental feedback, thus it is capable of solving multiple problems at the same time. DeepMind provides a method called Rainbow DQN[1], which combines six modifications in the field of DRL, and it performs better than human masters in some Atari games in 2017. In this study, we introduce a visualization method of the neural network learning together with testing procedure based on Rainbow DQN, by employing an encoder-decoder architecture that uses a part of the original neural network as an encoder, some additional layers as embedding method, and an extra reversed neural network as the decoder. We further conduct the analysis of the gaming behavior, and observe better gaming performance in some Atari games.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00349328
書誌情報 第84回全国大会講演論文集

巻 2022, 号 1, p. 569-570, 発行日 2022-02-17
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:19:47.963815
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3