ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.63
  3. No.10

Stetho Touch: Touch Action Recognition System by Deep Learning with Stethoscope Acoustic Sensing

https://ipsj.ixsq.nii.ac.jp/records/220346
https://ipsj.ixsq.nii.ac.jp/records/220346
9cd659e5-7621-4561-9ecd-9936b2049240
名前 / ファイル ライセンス アクション
IPSJ-JNL6310005.pdf IPSJ-JNL6310005.pdf (3.1 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2022-10-15
タイトル
タイトル Stetho Touch: Touch Action Recognition System by Deep Learning with Stethoscope Acoustic Sensing
タイトル
言語 en
タイトル Stetho Touch: Touch Action Recognition System by Deep Learning with Stethoscope Acoustic Sensing
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] machine learning, deep learning, CHI, acoustic sensing
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate of Faculty of Engineering, Sophia University
著者所属
Graduate of Faculty of Engineering, Sophia University
著者所属
Graduate of Faculty of Engineering, Sophia University
著者所属(英)
en
Graduate of Faculty of Engineering, Sophia University
著者所属(英)
en
Graduate of Faculty of Engineering, Sophia University
著者所属(英)
en
Graduate of Faculty of Engineering, Sophia University
著者名 Nagisa, Masuda

× Nagisa, Masuda

Nagisa, Masuda

Search repository
Koichi, Furukawa

× Koichi, Furukawa

Koichi, Furukawa

Search repository
Ikuko, Eguchi Yairi

× Ikuko, Eguchi Yairi

Ikuko, Eguchi Yairi

Search repository
著者名(英) Nagisa, Masuda

× Nagisa, Masuda

en Nagisa, Masuda

Search repository
Koichi, Furukawa

× Koichi, Furukawa

en Koichi, Furukawa

Search repository
Ikuko, Eguchi Yairi

× Ikuko, Eguchi Yairi

en Ikuko, Eguchi Yairi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Developing a new IoT device input method that can reduce the burden on users has become an important issue. This paper proposed a system Stetho Touch that identifies touch actions using acoustic information obtained when a user's finger makes contact with a solid object. To investigate the method, we implemented a prototype of an acoustic sensing device consisting of a low-pressure melamine veneer table, a stethoscope, and an audio interface. The CNN-LSTM classification model of combining CNN and LSTM classified the five touch actions with accuracy 88.26%, f-score 87.26% in LOSO and accuracy 99.39, f-score 99.39 in 18-fold cross-validation. The contributions of this paper are the following; (1) proposed a touch action recognition method using acoustic information that is more natural and accurate than existing methods, (2) evaluated a touch action recognition method using Deep Learning that can be processed in real-time using acoustic time series raw data as input, and (3) proved the compensations for the user dependence of touch actions by providing a learning phase or performing sequential learning during use.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.718
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Developing a new IoT device input method that can reduce the burden on users has become an important issue. This paper proposed a system Stetho Touch that identifies touch actions using acoustic information obtained when a user's finger makes contact with a solid object. To investigate the method, we implemented a prototype of an acoustic sensing device consisting of a low-pressure melamine veneer table, a stethoscope, and an audio interface. The CNN-LSTM classification model of combining CNN and LSTM classified the five touch actions with accuracy 88.26%, f-score 87.26% in LOSO and accuracy 99.39, f-score 99.39 in 18-fold cross-validation. The contributions of this paper are the following; (1) proposed a touch action recognition method using acoustic information that is more natural and accurate than existing methods, (2) evaluated a touch action recognition method using Deep Learning that can be processed in real-time using acoustic time series raw data as input, and (3) proved the compensations for the user dependence of touch actions by providing a learning phase or performing sequential learning during use.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.718
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 63, 号 10, 発行日 2022-10-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:35:17.066234
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3