ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. コンピューティングシステム(ACS)
  3. Vol.15
  4. No.2

A New AINV Preconditioner for the CG Method in Hybrid CPU-GPU Computing Environment

https://ipsj.ixsq.nii.ac.jp/records/220310
https://ipsj.ixsq.nii.ac.jp/records/220310
9159990e-bbe7-4246-a1e3-0af8322ded48
名前 / ファイル ライセンス アクション
IPSJ-TACS1502003.pdf IPSJ-TACS1502003.pdf (672.9 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2022-09-27
タイトル
タイトル A New AINV Preconditioner for the CG Method in Hybrid CPU-GPU Computing Environment
タイトル
言語 en
タイトル A New AINV Preconditioner for the CG Method in Hybrid CPU-GPU Computing Environment
言語
言語 eng
キーワード
主題Scheme Other
主題 Iterative linear solver, Conjugate gradient method, Sparse approximate inverse preconditioning, AINV preconditioner, Multi-threading, Graphics processing units
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Hokkaido University
著者所属
Information Initiative Center, Hokkaido University
著者所属
Information Initiative Center, Hokkaido University
著者所属(英)
en
Graduate School of Information Science and Technology, Hokkaido University
著者所属(英)
en
Information Initiative Center, Hokkaido University
著者所属(英)
en
Information Initiative Center, Hokkaido University
著者名 Kengo, Suzuki

× Kengo, Suzuki

Kengo, Suzuki

Search repository
Takeshi, Fukaya

× Takeshi, Fukaya

Takeshi, Fukaya

Search repository
Takeshi, Iwashita

× Takeshi, Iwashita

Takeshi, Iwashita

Search repository
著者名(英) Kengo, Suzuki

× Kengo, Suzuki

en Kengo, Suzuki

Search repository
Takeshi, Fukaya

× Takeshi, Fukaya

en Takeshi, Fukaya

Search repository
Takeshi, Iwashita

× Takeshi, Iwashita

en Takeshi, Iwashita

Search repository
論文抄録
内容記述タイプ Other
内容記述 In the last few decades, graphics processing units (GPUs) have been used to efficiently solve linear systems by means of preconditioned Krylov subspace methods. The preconditioner is required to have a high degree of parallelism to exploit the potential of GPUs for massive data processing. An approximate inverse (AINV) preconditioner is suitable for GPU implementation because its preconditioning operations mainly consist of sparse matrix-vector multiplication. However, an AINV algorithm, the algorithm to construct the AINV preconditioner, usually requires more time than construction algorithms for other preconditioners, such as the ILU/IC factorization. Therefore, it is necessary to improve the AINV algorithm to make AINV preconditioning more attractive. In this study, we propose a new version of the AINV algorithm: the SD-AINV algorithm, by introducing a statically defined approximation based on nonzero element positions of a coefficient matrix. The SD-AINV algorithm is expected to run faster than the AINV algorithm because the approximation reduces the computational cost of the AINV algorithm. In addition, the approximation enables parallel implementations of the SD-AINV algorithm using nodal/block multi-color ordering. Numerical experiments show that the SD-AINV algorithm constructs the preconditioner faster than the conventional AINV algorithm without significantly degrading the performance of the preconditioned conjugate gradient method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 In the last few decades, graphics processing units (GPUs) have been used to efficiently solve linear systems by means of preconditioned Krylov subspace methods. The preconditioner is required to have a high degree of parallelism to exploit the potential of GPUs for massive data processing. An approximate inverse (AINV) preconditioner is suitable for GPU implementation because its preconditioning operations mainly consist of sparse matrix-vector multiplication. However, an AINV algorithm, the algorithm to construct the AINV preconditioner, usually requires more time than construction algorithms for other preconditioners, such as the ILU/IC factorization. Therefore, it is necessary to improve the AINV algorithm to make AINV preconditioning more attractive. In this study, we propose a new version of the AINV algorithm: the SD-AINV algorithm, by introducing a statically defined approximation based on nonzero element positions of a coefficient matrix. The SD-AINV algorithm is expected to run faster than the AINV algorithm because the approximation reduces the computational cost of the AINV algorithm. In addition, the approximation enables parallel implementations of the SD-AINV algorithm using nodal/block multi-color ordering. Numerical experiments show that the SD-AINV algorithm constructs the preconditioner faster than the conventional AINV algorithm without significantly degrading the performance of the preconditioned conjugate gradient method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11833852
書誌情報 情報処理学会論文誌コンピューティングシステム(ACS)

巻 15, 号 2, 発行日 2022-09-27
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7829
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:36:31.491041
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3