{"updated":"2025-01-19T14:37:05.320496+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00220282","sets":["1164:5336:10887:11018"]},"path":["11018"],"owner":"44499","recid":"220282","title":["超音波動画内の正中神経セグメンテーションと手根管症候群推定"],"pubdate":{"attribute_name":"公開日","attribute_value":"2022-09-29"},"_buckets":{"deposit":"301ce2fa-bf84-4718-9b55-7260be3602ff"},"_deposit":{"id":"220282","pid":{"type":"depid","value":"220282","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"超音波動画内の正中神経セグメンテーションと手根管症候群推定","author_link":["575832","575827","575826","575834","575828","575825","575835","575831","575830","575824","575829","575833"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"超音波動画内の正中神経セグメンテーションと手根管症候群推定"},{"subitem_title":"Median Nerve Segmentation and Carpal Tunnel Syndrome Estimation in Ultrasound Movies","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"計測・認証1","subitem_subject_scheme":"Other"}]},"item_type_id":"4","publish_date":"2022-09-29","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"慶應義塾大学"},{"subitem_text_value":"慶應義塾大学"},{"subitem_text_value":"東京医科歯科大学"},{"subitem_text_value":"東京医科歯科大学"},{"subitem_text_value":"東京医科歯科大学"},{"subitem_text_value":"慶應義塾大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Keio University","subitem_text_language":"en"},{"subitem_text_value":"Keio University","subitem_text_language":"en"},{"subitem_text_value":"Tokyo Medical And Dental University","subitem_text_language":"en"},{"subitem_text_value":"Tokyo Medical And Dental University","subitem_text_language":"en"},{"subitem_text_value":"Tokyo Medical And Dental University","subitem_text_language":"en"},{"subitem_text_value":"Keio University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/220282/files/IPSJ-EC22065018.pdf","label":"IPSJ-EC22065018.pdf"},"date":[{"dateType":"Available","dateValue":"2024-09-29"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-EC22065018.pdf","filesize":[{"value":"1.5 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"40"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"cf154bc0-6fe2-4be8-88f3-3d6389b8a435","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2022 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"佐藤, 優希菜"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"松尾, 佳奈"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"小山, 恭史"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"山田, 英莉久"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"藤田, 浩二"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"杉浦, 裕太"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Yukina, Sato","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kana, Matsuo","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takafumi, Koyama","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Eriku, Yamada","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Koji, Fujita","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yuta, Sugiura","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12049625","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8914","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Carpal tunnel syndrome is a disease that causes numbness and motor dysfunction of the fingers due to compression of the median nerve. In this study, Mask R-CNN is used to estimate the area of the nerve in each frame of an ultrasound movie of a specific hand movement. Features of the estimated regions are extracted by image processing, and time series data such as convex area, perimeter, flattening, center-of-gravity coordinates and eccentricity are collected to estimate the presence and severity of carpal tunnel syndrome. Class classification based on group k-fold cross-validation using features obtained from 37 videos of patients and 22 videos of healthy subjects resulted in an accuracy rate of 66.1%, sensitivity of 82.9%, and specificity of 79.2%.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Carpal tunnel syndrome is a disease that causes numbness and motor dysfunction of the fingers due to compression of the median nerve. In this study, Mask R-CNN is used to estimate the area of the nerve in each frame of an ultrasound movie of a specific hand movement. Features of the estimated regions are extracted by image processing, and time series data such as convex area, perimeter, flattening, center-of-gravity coordinates and eccentricity are collected to estimate the presence and severity of carpal tunnel syndrome. Class classification based on group k-fold cross-validation using features obtained from 37 videos of patients and 22 videos of healthy subjects resulted in an accuracy rate of 66.1%, sensitivity of 82.9%, and specificity of 79.2%.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"4","bibliographic_titles":[{"bibliographic_title":"研究報告エンタテインメントコンピューティング(EC)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2022-09-29","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"18","bibliographicVolumeNumber":"2022-EC-65"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"created":"2025-01-19T01:20:19.667349+00:00","id":220282,"links":{}}