ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.63
  3. No.9

Evaluation of a cGAN Model and Random Seed Oversampling on Imbalanced JavaScript Datasets

https://ipsj.ixsq.nii.ac.jp/records/220191
https://ipsj.ixsq.nii.ac.jp/records/220191
6a86bb0e-ff28-4d0a-b35e-1eeca1d60a11
名前 / ファイル ライセンス アクション
IPSJ-JNL6309007.pdf IPSJ-JNL6309007.pdf (1.3 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2022-09-15
タイトル
タイトル Evaluation of a cGAN Model and Random Seed Oversampling on Imbalanced JavaScript Datasets
タイトル
言語 en
タイトル Evaluation of a cGAN Model and Random Seed Oversampling on Imbalanced JavaScript Datasets
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:量子時代をみすえたコンピュータセキュリティ技術] malicious JavaScript, LSI model, natural language processing, oversampling, machine learning, cGAN
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
National Defense Academy
著者所属
National Defense Academy
著者所属(英)
en
National Defense Academy
著者所属(英)
en
National Defense Academy
著者名 Ngoc, Minh Phung

× Ngoc, Minh Phung

Ngoc, Minh Phung

Search repository
Mamoru, Mimura

× Mamoru, Mimura

Mamoru, Mimura

Search repository
著者名(英) Ngoc, Minh Phung

× Ngoc, Minh Phung

en Ngoc, Minh Phung

Search repository
Mamoru, Mimura

× Mamoru, Mimura

en Mamoru, Mimura

Search repository
論文抄録
内容記述タイプ Other
内容記述 Malicious JavaScript detection using machine learning models have shown many great results over the years. The main problem is that the dataset used to train the model tends to be imbalanced, as the size of the malicious dataset is far smaller than the benign one. Many of the previous techniques ignore most of the benign samples and focus on training a machine learning model with a balanced dataset. However, real-world data only has a small fraction of malicious JavaScript, making it an imbalanced dataset. This paper proposes a cGAN-based filter model that can quickly classify JavaScript malware using Natural Language Processing (NLP) and oversampling. The feature of the JavaScript file will be converted into vector form and used to train the SVM classifier. Different NLP models and oversampling methods are tested to achieve a high recall score, such as the Doc2Vec and Latent Semantic Indexing (LSI) models. In this paper, a cGAN model will be used to generate new training malicious data based on the original training dataset. We evaluate our models with a dataset of over 30,000 samples obtained from top popular websites, PhishTank, and GitHub. The experimental result shows that the best recall score achieves 0.78 with the LSI model.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.591
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Malicious JavaScript detection using machine learning models have shown many great results over the years. The main problem is that the dataset used to train the model tends to be imbalanced, as the size of the malicious dataset is far smaller than the benign one. Many of the previous techniques ignore most of the benign samples and focus on training a machine learning model with a balanced dataset. However, real-world data only has a small fraction of malicious JavaScript, making it an imbalanced dataset. This paper proposes a cGAN-based filter model that can quickly classify JavaScript malware using Natural Language Processing (NLP) and oversampling. The feature of the JavaScript file will be converted into vector form and used to train the SVM classifier. Different NLP models and oversampling methods are tested to achieve a high recall score, such as the Doc2Vec and Latent Semantic Indexing (LSI) models. In this paper, a cGAN model will be used to generate new training malicious data based on the original training dataset. We evaluate our models with a dataset of over 30,000 samples obtained from top popular websites, PhishTank, and GitHub. The experimental result shows that the best recall score achieves 0.78 with the LSI model.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.591
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 63, 号 9, 発行日 2022-09-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 13:55:49.737468
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3