ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 情報基礎とアクセス技術(IFAT)
  3. 2022
  4. 2022-IFAT-148

User-Interactive Molecular Graph Suggestion for Drug Discovery

https://ipsj.ixsq.nii.ac.jp/records/220031
https://ipsj.ixsq.nii.ac.jp/records/220031
100bfbf7-b2db-46ef-a186-a892c7593cbc
名前 / ファイル ライセンス アクション
IPSJ-IFAT22148033.pdf IPSJ-IFAT22148033.pdf (3.2 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-09-02
タイトル
タイトル User-Interactive Molecular Graph Suggestion for Drug Discovery
タイトル
言語 en
タイトル User-Interactive Molecular Graph Suggestion for Drug Discovery
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Hokkaido University
著者所属
Hokkaido University/RIKEN AIP
著者所属
Nagoya University/Osaka University
著者所属(英)
en
Hokkaido University
著者所属(英)
en
Hokkaido University / RIKEN AIP
著者所属(英)
en
Nagoya University / Osaka University
著者名 Sheng, Hu

× Sheng, Hu

Sheng, Hu

Search repository
Ichigaku, Takigawa

× Ichigaku, Takigawa

Ichigaku, Takigawa

Search repository
Chuan, Xiao

× Chuan, Xiao

Chuan, Xiao

Search repository
著者名(英) Sheng, Hu

× Sheng, Hu

en Sheng, Hu

Search repository
Ichigaku, Takigawa

× Ichigaku, Takigawa

en Ichigaku, Takigawa

Search repository
Chuan, Xiao

× Chuan, Xiao

en Chuan, Xiao

Search repository
論文抄録
内容記述タイプ Other
内容記述 We present a novel molecular graph generation method by auto-completing a privileged scaffold which represents a core graph substructure step-by-step. We propose a generative GNN model thus providing the ability to generate unseen molecular graphs outside the given training set. An edit-aware graph autocompletion paradigm that follows the “substructure-by-substructure” process is designed to complete the scaffold queries in multiple substructure adopt operations and allow meaningful edit operations to show the user's intention. Such operations enable the involvement of user decisions when interacting with a generative user-centered AI system, which differentiates our work from existing single-run generation paradigms. Particularly, a Monte Carlo tree search (MCTS) method is employed to satisfy the property requirements and navigate the search space when complying with users' edit operations. Moreover, we design a top-k ranking function which considers the preferences on popularity and diversity for different applications, such as query compositions for graph database and drug discovery respectively. Such techniques enable human experts to synergistically interact with the generative models grounded on large data.
論文抄録(英)
内容記述タイプ Other
内容記述 We present a novel molecular graph generation method by auto-completing a privileged scaffold which represents a core graph substructure step-by-step. We propose a generative GNN model thus providing the ability to generate unseen molecular graphs outside the given training set. An edit-aware graph autocompletion paradigm that follows the “substructure-by-substructure” process is designed to complete the scaffold queries in multiple substructure adopt operations and allow meaningful edit operations to show the user's intention. Such operations enable the involvement of user decisions when interacting with a generative user-centered AI system, which differentiates our work from existing single-run generation paradigms. Particularly, a Monte Carlo tree search (MCTS) method is employed to satisfy the property requirements and navigate the search space when complying with users' edit operations. Moreover, we design a top-k ranking function which considers the preferences on popularity and diversity for different applications, such as query compositions for graph database and drug discovery respectively. Such techniques enable human experts to synergistically interact with the generative models grounded on large data.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10114171
書誌情報 研究報告情報基礎とアクセス技術(IFAT)

巻 2022-IFAT-148, 号 33, p. 1-5, 発行日 2022-09-02
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8884
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:41:33.105098
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3