Item type |
SIG Technical Reports(1) |
公開日 |
2022-08-29 |
タイトル |
|
|
タイトル |
What Can Data-driven Calibration Do for 6DOF Inertial Odometry? |
タイトル |
|
|
言語 |
en |
|
タイトル |
What Can Data-driven Calibration Do for 6DOF Inertial Odometry? |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
行動認識:IMU |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者名 |
Huakun, Liu
Monica, Perusquía-Hernández
Naoya, Isoyama
Hideaki, Uchiyama
Kiyoshi, Kiyokawa
|
著者名(英) |
Huakun, Liu
Monica, Perusquía-Hernández
Naoya, Isoyama
Hideaki, Uchiyama
Kiyoshi, Kiyokawa
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
For low-cost IMU, the uncalibrated bias and noise will quickly propagate 6DOF odometry errors over time. This paper proposes a data-driven accelerometer calibration method based on a dilated convolution network. Then, with a state-of-the-art gyroscope calibration method, we comprehensively analyze the impact of data-driven calibration on 6DOF inertial odometry. The experimental results show that our data-driven accelerometer calibration can reduce the bias by a factor of 5 to 10 and decreases the noise by a factor of 2 to 5. Through our exhaustive evaluations and analysis of data-driven calibration methods, the primary finding is that the data-driven calibration methods can slow down the error growth rate by 40-200 times. However, the effect of accelerometer calibration is only noticeable after calibrating the gyroscope. This fact would be experimental support for the design of future data-driven 6DOF inertial odometry. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
For low-cost IMU, the uncalibrated bias and noise will quickly propagate 6DOF odometry errors over time. This paper proposes a data-driven accelerometer calibration method based on a dilated convolution network. Then, with a state-of-the-art gyroscope calibration method, we comprehensively analyze the impact of data-driven calibration on 6DOF inertial odometry. The experimental results show that our data-driven accelerometer calibration can reduce the bias by a factor of 5 to 10 and decreases the noise by a factor of 2 to 5. Through our exhaustive evaluations and analysis of data-driven calibration methods, the primary finding is that the data-driven calibration methods can slow down the error growth rate by 40-200 times. However, the effect of accelerometer calibration is only noticeable after calibrating the gyroscope. This fact would be experimental support for the design of future data-driven 6DOF inertial odometry. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA12628327 |
書誌情報 |
研究報告コンシューマ・デバイス&システム(CDS)
巻 2022-CDS-35,
号 8,
p. 1-10,
発行日 2022-08-29
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8604 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |