ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンシューマ・デバイス&システム(CDS)
  3. 2022
  4. 2022-CDS-035

Computational Cost Reduction for Human Activity Recognition Using Clockwork Recurrent Neural Networks

https://ipsj.ixsq.nii.ac.jp/records/219886
https://ipsj.ixsq.nii.ac.jp/records/219886
5ccb1afb-f027-44fa-8922-17ea850e6dae
名前 / ファイル ライセンス アクション
IPSJ-CDS22035001.pdf IPSJ-CDS22035001.pdf (920.3 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-08-29
タイトル
タイトル Computational Cost Reduction for Human Activity Recognition Using Clockwork Recurrent Neural Networks
タイトル
言語 en
タイトル Computational Cost Reduction for Human Activity Recognition Using Clockwork Recurrent Neural Networks
言語
言語 eng
キーワード
主題Scheme Other
主題 生体センシング
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
国際基督教大学
著者所属
国際基督教大学
著者所属(英)
en
International Christian University
著者所属(英)
en
International Christian University
著者名 山岸, 信夫

× 山岸, 信夫

山岸, 信夫

Search repository
鏑木, 崇史

× 鏑木, 崇史

鏑木, 崇史

Search repository
著者名(英) Shinobu, Yamagishi

× Shinobu, Yamagishi

en Shinobu, Yamagishi

Search repository
Takashi, Kaburagi

× Takashi, Kaburagi

en Takashi, Kaburagi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Human Activity Recognition is a field concerned with the identification of human activities using digital sensors such as cameras and motion sensors. The field is becoming increasingly relevant to the daily lives of people in areas with an abundance of technology in the form of “smart” devices. The smartphone is an popular example of a device that can be used to detect activities. However, the current methods for identifying activities tend to have a high computational cost that prevent them from occuring on devices with less computation capabilities. Thus, in this paper we suggest the Clockwork Recurrent Neural Network (CWRNN) model developed by Koutnik in 2014 [1] as a way to decrease computational cost. The results of the implementation of CWRNN against Long Short-Term Memory (LSTM) suggest that LSTMs are superior for classification accuracy, though the CWRNN model used has potential to be further optimized
論文抄録(英)
内容記述タイプ Other
内容記述 Human Activity Recognition is a field concerned with the identification of human activities using digital sensors such as cameras and motion sensors. The field is becoming increasingly relevant to the daily lives of people in areas with an abundance of technology in the form of “smart” devices. The smartphone is an popular example of a device that can be used to detect activities. However, the current methods for identifying activities tend to have a high computational cost that prevent them from occuring on devices with less computation capabilities. Thus, in this paper we suggest the Clockwork Recurrent Neural Network (CWRNN) model developed by Koutnik in 2014 [1] as a way to decrease computational cost. The results of the implementation of CWRNN against Long Short-Term Memory (LSTM) suggest that LSTMs are superior for classification accuracy, though the CWRNN model used has potential to be further optimized
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12628327
書誌情報 研究報告コンシューマ・デバイス&システム(CDS)

巻 2022-CDS-35, 号 1, p. 1-7, 発行日 2022-08-29
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8604
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:44:43.050923
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3