ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2022

Punch Detection and Classification Using Multiple IMUs

https://ipsj.ixsq.nii.ac.jp/records/219798
https://ipsj.ixsq.nii.ac.jp/records/219798
aec5b871-f227-4e68-bf5c-1e73c0887809
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2022224.pdf IPSJ-DICOMO2022224.pdf (2.0 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2022-07-06
タイトル
タイトル Punch Detection and Classification Using Multiple IMUs
タイトル
言語 en
タイトル Punch Detection and Classification Using Multiple IMUs
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
青山学院大学
著者所属
青山学院大学
著者所属
青山学院大学
著者所属(英)
en
Aoyama Gakuin University
著者所属(英)
en
Aoyama Gakuin University
著者所属(英)
en
Aoyama Gakuin University
著者名 花田, 祥典

× 花田, 祥典

花田, 祥典

Search repository
横窪, 安奈

× 横窪, 安奈

横窪, 安奈

Search repository
ロペズ, ギヨーム

× ロペズ, ギヨーム

ロペズ, ギヨーム

Search repository
著者名(英) Yoshinori, Hanada

× Yoshinori, Hanada

en Yoshinori, Hanada

Search repository
Anna, Yokokubo

× Anna, Yokokubo

en Anna, Yokokubo

Search repository
Guillaume, Lopez

× Guillaume, Lopez

en Guillaume, Lopez

Search repository
論文抄録
内容記述タイプ Other
内容記述 Physical exercise is essential for living a healthy life since it has substantial physical and mental health benefits. For this purpose, wearable equipment and sensing devices have exploded in popularity in recent years for monitoring physical activity, whether for well-being, sports monitoring, or medical rehabilitation. In this regard, this paper focuses on introducing sensor-based punch detection and classification methods toward the boxing supporting system which is popular not only as a competitive sport but also as a fitness standard. The proposed method is evaluated on 10 participants where we achieved 98.8% detection accuracy, 98.9% classification accuracy with SVM in-person-dependent (PD) cases, and 91.1% classification accuracy with SVM in person-independent (PI) cases. In addition, we conducted a preliminary experiment for classifying 6 different types of punches performed from both hands for two different sensor positions (right wrist and upper back). The result suggested that using an IMU on the upper back is more suited for classifying both hand punches than an IMU on the right wrist.
論文抄録(英)
内容記述タイプ Other
内容記述 Physical exercise is essential for living a healthy life since it has substantial physical and mental health benefits. For this purpose, wearable equipment and sensing devices have exploded in popularity in recent years for monitoring physical activity, whether for well-being, sports monitoring, or medical rehabilitation. In this regard, this paper focuses on introducing sensor-based punch detection and classification methods toward the boxing supporting system which is popular not only as a competitive sport but also as a fitness standard. The proposed method is evaluated on 10 participants where we achieved 98.8% detection accuracy, 98.9% classification accuracy with SVM in-person-dependent (PD) cases, and 91.1% classification accuracy with SVM in person-independent (PI) cases. In addition, we conducted a preliminary experiment for classifying 6 different types of punches performed from both hands for two different sensor positions (right wrist and upper back). The result suggested that using an IMU on the upper back is more suited for classifying both hand punches than an IMU on the right wrist.
書誌情報 マルチメディア,分散,協調とモバイルシンポジウム2022論文集

巻 2022, p. 1618-1624, 発行日 2022-07-06
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:46:35.993811
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3