ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システム・アーキテクチャ(ARC)
  3. 2022
  4. 2022-ARC-249

Fault-aware Hardware Scheduling of Computations in Deep Neural Networks

https://ipsj.ixsq.nii.ac.jp/records/219008
https://ipsj.ixsq.nii.ac.jp/records/219008
6d279613-88e3-4732-8f8e-16140c64f23e
名前 / ファイル ライセンス アクション
IPSJ-ARC22249019.pdf IPSJ-ARC22249019.pdf (2.8 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-07-20
タイトル
タイトル Fault-aware Hardware Scheduling of Computations in Deep Neural Networks
タイトル
言語 en
タイトル Fault-aware Hardware Scheduling of Computations in Deep Neural Networks
言語
言語 eng
キーワード
主題Scheme Other
主題 AI技術
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Keio University
著者所属
Keio University
著者所属
Keio University/RIKEN
著者所属(英)
en
Keio University
著者所属(英)
en
Keio University
著者所属(英)
en
Keio University / RIKEN
著者名 Shaswot, Shresthamali

× Shaswot, Shresthamali

Shaswot, Shresthamali

Search repository
Yuan, He

× Yuan, He

Yuan, He

Search repository
Masaaki, Kondo

× Masaaki, Kondo

Masaaki, Kondo

Search repository
著者名(英) Shaswot, Shresthamali

× Shaswot, Shresthamali

en Shaswot, Shresthamali

Search repository
Yuan, He

× Yuan, He

en Yuan, He

Search repository
Masaaki, Kondo

× Masaaki, Kondo

en Masaaki, Kondo

Search repository
論文抄録
内容記述タイプ Other
内容記述 The idea of using inexact computation for overprovisioned DNNs (Deep Neural Networks) to extract power savings and performance gains at the cost of minor performance degradation has become very popular. However, there is still no general method to schedule the DNN computations on a given hardware platform to effectively implement this idea without loss in computational efficiency. Most contemporary methods require extensive retraining, specialized hardware and hardware-specific scheduling schemes. We present HAS: Hardware Agnostic Scheduler for scheduling DNN computations in heterogeneous and faulty hardware. Given a trained DNN model and a hardware fault profile, our scheduler is able to recover significant performance even at high fault rates. HAS schedules the computations such that the low priority ones are allocated to inexact hardware. Since most DNN computations are matrix multiplications, it achieves this by shuffling (exchanging) the rows of the matrices. The best shuffling order for a given DNN model and hardware faulty profile is determined using Genetic Algorithms (GA). We simulate bitwise errors on different model architectures and datasets with different types of fault profiles and observe that HAS can recover up to 30% of classification accuracy even at high fault rates (which correspond to approximately 50% power savings).
論文抄録(英)
内容記述タイプ Other
内容記述 The idea of using inexact computation for overprovisioned DNNs (Deep Neural Networks) to extract power savings and performance gains at the cost of minor performance degradation has become very popular. However, there is still no general method to schedule the DNN computations on a given hardware platform to effectively implement this idea without loss in computational efficiency. Most contemporary methods require extensive retraining, specialized hardware and hardware-specific scheduling schemes. We present HAS: Hardware Agnostic Scheduler for scheduling DNN computations in heterogeneous and faulty hardware. Given a trained DNN model and a hardware fault profile, our scheduler is able to recover significant performance even at high fault rates. HAS schedules the computations such that the low priority ones are allocated to inexact hardware. Since most DNN computations are matrix multiplications, it achieves this by shuffling (exchanging) the rows of the matrices. The best shuffling order for a given DNN model and hardware faulty profile is determined using Genetic Algorithms (GA). We simulate bitwise errors on different model architectures and datasets with different types of fault profiles and observe that HAS can recover up to 30% of classification accuracy even at high fault rates (which correspond to approximately 50% power savings).
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10096105
書誌情報 研究報告システム・アーキテクチャ(ARC)

巻 2022-ARC-249, 号 19, p. 1-8, 発行日 2022-07-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8574
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:57:24.551072
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3