ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2022
  4. 2022-QS-006

Quantum tangent kernel

https://ipsj.ixsq.nii.ac.jp/records/218763
https://ipsj.ixsq.nii.ac.jp/records/218763
37d4d759-e59b-4c6f-8317-8622e61797f7
名前 / ファイル ライセンス アクション
IPSJ-QS22006004.pdf IPSJ-QS22006004.pdf (1.3 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-06-30
タイトル
タイトル Quantum tangent kernel
タイトル
言語 en
タイトル Quantum tangent kernel
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering Science, Osaka University
著者所属
Graduate School of Engineering Science, Osaka University/R4D, Mercari Inc.
著者所属
Graduate School of Engineering Science, Osaka University/Center for Quantum Information and Quantum Biology, Osaka University/JST, PRESTO
著者所属
Graduate School of Engineering Science, Osaka University/Center for Quantum Information and Quantum Biology, Osaka University/RIKEN Center for Quantum Computing
著者所属(英)
en
Graduate School of Engineering Science, Osaka University
著者所属(英)
en
Graduate School of Engineering Science, Osaka University / R4D, Mercari Inc.
著者所属(英)
en
Graduate School of Engineering Science, Osaka University / Center for Quantum Information and Quantum Biology, Osaka University / JST, PRESTO
著者所属(英)
en
Graduate School of Engineering Science, Osaka University / Center for Quantum Information and Quantum Biology, Osaka University / RIKEN Center for Quantum Computing
著者名 Norihito, Shirai

× Norihito, Shirai

Norihito, Shirai

Search repository
Kenji, Kubo

× Kenji, Kubo

Kenji, Kubo

Search repository
Kosuke, Mitarai

× Kosuke, Mitarai

Kosuke, Mitarai

Search repository
Keisuke, Fujii

× Keisuke, Fujii

Keisuke, Fujii

Search repository
著者名(英) Norihito, Shirai

× Norihito, Shirai

en Norihito, Shirai

Search repository
Kenji, Kubo

× Kenji, Kubo

en Kenji, Kubo

Search repository
Kosuke, Mitarai

× Kosuke, Mitarai

en Kosuke, Mitarai

Search repository
Keisuke, Fujii

× Keisuke, Fujii

en Keisuke, Fujii

Search repository
論文抄録
内容記述タイプ Other
内容記述 Quantum kernel method is one of the key approaches to quantum machine learning, which has the advantages that it does not require optimization and has theoretical simplicity. By virtue of these properties, several experimental demonstrations and discussions of the potential advantages have been developed so far. However, as is the case in classical machine learning, not all quantum machine learning models could be regarded as kernel methods. In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit and aim to go beyond the conventional quantum kernel method. In this case, the representation power and performance are expected to be enhanced, while the training process might be a bottleneck because of the barren plateaus issue. However, we find that parameters of a deep enough quantum circuit do not move much from its initial values during training, allowing first-order expansion with respect to the parameters. This behavior is similar to the neural tangent kernel in the classical literatures, and such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel. Numerical simulations show that the proposed quantum tangent kernel outperforms the conventional quantum kernel method for an ansatz-generated dataset. This work provides a new direction beyond the conventional quantum kernel method and explores potential power of quantum machine learning with deep parameterized quantum circuits.
論文抄録(英)
内容記述タイプ Other
内容記述 Quantum kernel method is one of the key approaches to quantum machine learning, which has the advantages that it does not require optimization and has theoretical simplicity. By virtue of these properties, several experimental demonstrations and discussions of the potential advantages have been developed so far. However, as is the case in classical machine learning, not all quantum machine learning models could be regarded as kernel methods. In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit and aim to go beyond the conventional quantum kernel method. In this case, the representation power and performance are expected to be enhanced, while the training process might be a bottleneck because of the barren plateaus issue. However, we find that parameters of a deep enough quantum circuit do not move much from its initial values during training, allowing first-order expansion with respect to the parameters. This behavior is similar to the neural tangent kernel in the classical literatures, and such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel. Numerical simulations show that the proposed quantum tangent kernel outperforms the conventional quantum kernel method for an ansatz-generated dataset. This work provides a new direction beyond the conventional quantum kernel method and explores potential power of quantum machine learning with deep parameterized quantum circuits.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 量子ソフトウェア(QS)

巻 2022-QS-6, 号 4, p. 1-6, 発行日 2022-06-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:02:38.997632
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3