ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2022
  4. 2022-QS-006

Parametric t-Stochastic Neighbor Embedding With Quantum Neural Network

https://ipsj.ixsq.nii.ac.jp/records/218761
https://ipsj.ixsq.nii.ac.jp/records/218761
66080400-d29e-42d5-8375-cdd4a1fbdfc6
名前 / ファイル ライセンス アクション
IPSJ-QS22006002.pdf IPSJ-QS22006002.pdf (4.2 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-06-30
タイトル
タイトル Parametric t-Stochastic Neighbor Embedding With Quantum Neural Network
タイトル
言語 en
タイトル Parametric t-Stochastic Neighbor Embedding With Quantum Neural Network
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering Science, Osaka University
著者所属
Graduate School of Engineering Science, Osaka University/Center for Quantum Information and Quantum Biology, Osaka University/JST, PRESTO
著者所属
Graduate School of Engineering Science, Osaka University/Center for Quantum Information and Quantum Biology, Osaka University/RIKEN Center for Quantum Computing
著者所属(英)
en
Graduate School of Engineering Science, Osaka University
著者所属(英)
en
Graduate School of Engineering Science, Osaka University / Center for Quantum Information and Quantum Biology, Osaka University / JST, PRESTO
著者所属(英)
en
Graduate School of Engineering Science, Osaka University / Center for Quantum Information and Quantum Biology, Osaka University / RIKEN Center for Quantum Computing
著者名 Yoshiaki, Kawase

× Yoshiaki, Kawase

Yoshiaki, Kawase

Search repository
Kosuke, Mitarai

× Kosuke, Mitarai

Kosuke, Mitarai

Search repository
Keisuke, Fujii

× Keisuke, Fujii

Keisuke, Fujii

Search repository
著者名(英) Yoshiaki, Kawase

× Yoshiaki, Kawase

en Yoshiaki, Kawase

Search repository
Kosuke, Mitarai

× Kosuke, Mitarai

en Kosuke, Mitarai

Search repository
Keisuke, Fujii

× Keisuke, Fujii

en Keisuke, Fujii

Search repository
論文抄録
内容記述タイプ Other
内容記述 t-Stochastic Neighbor Embedding (t-SNE) is a non-parametric data visualization method in classical machine learning. It maps the data from the high-dimensional space into a low-dimensional space, especially a two-dimensional plane, while maintaining the relationship, or similarities, between the surrounding points. In t-SNE, the initial position of the low-dimensional data is randomly determined, and the visualization is achieved by moving the low-dimensional data to minimize a cost function. Its variant called parametric t-SNE uses neural networks for this mapping. In this paper, we propose to use quantum neural networks for parametric t-SNE to reflect the characteristics of high-dimensional quantum data on low-dimensional data. We use fidelity-based metrics instead of Euclidean distance in calculating high-dimensional data similarity. We visualize both classical (Iris dataset) and quantum (time-depending Hamiltonian dynamics) data for classification tasks. Since this method allows us to represent a quantum dataset in a higher dimensional Hilbert space by a quantum dataset in a lower dimension while keeping their similarity, the proposed method can also be used to compress quantum data for further quantum machine learning.
論文抄録(英)
内容記述タイプ Other
内容記述 t-Stochastic Neighbor Embedding (t-SNE) is a non-parametric data visualization method in classical machine learning. It maps the data from the high-dimensional space into a low-dimensional space, especially a two-dimensional plane, while maintaining the relationship, or similarities, between the surrounding points. In t-SNE, the initial position of the low-dimensional data is randomly determined, and the visualization is achieved by moving the low-dimensional data to minimize a cost function. Its variant called parametric t-SNE uses neural networks for this mapping. In this paper, we propose to use quantum neural networks for parametric t-SNE to reflect the characteristics of high-dimensional quantum data on low-dimensional data. We use fidelity-based metrics instead of Euclidean distance in calculating high-dimensional data similarity. We visualize both classical (Iris dataset) and quantum (time-depending Hamiltonian dynamics) data for classification tasks. Since this method allows us to represent a quantum dataset in a higher dimensional Hilbert space by a quantum dataset in a lower dimension while keeping their similarity, the proposed method can also be used to compress quantum data for further quantum machine learning.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 量子ソフトウェア(QS)

巻 2022-QS-6, 号 2, p. 1-8, 発行日 2022-06-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:02:41.091607
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3