ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ドキュメントコミュニケーション(DC)
  3. 2022
  4. 2022-DC-125

Greenhouse Microclimate Prediction based on Neural Networks

https://ipsj.ixsq.nii.ac.jp/records/218721
https://ipsj.ixsq.nii.ac.jp/records/218721
444a2902-df29-4b2d-919b-7f2d8a77d103
名前 / ファイル ライセンス アクション
IPSJ-DC22125001.pdf IPSJ-DC22125001.pdf (1.3 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
DC:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-06-30
タイトル
タイトル Greenhouse Microclimate Prediction based on Neural Networks
タイトル
言語 en
タイトル Greenhouse Microclimate Prediction based on Neural Networks
言語
言語 eng
キーワード
主題Scheme Other
主題 LOIS
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Science and Technology
著者所属
Center for Computational Sciences
著者所属
Faculty of Life and Environmental Sciences University of Tsukuba
著者所属(英)
en
Graduate School of Science and Technology
著者所属(英)
en
Center for Computational Sciences
著者所属(英)
en
Faculty of Life and Environmental Sciences University of Tsukuba
著者名 Mujawamariya, Marie Grace

× Mujawamariya, Marie Grace

Mujawamariya, Marie Grace

Search repository
Toshiyuki, Amagasa

× Toshiyuki, Amagasa

Toshiyuki, Amagasa

Search repository
Naoya, Fukuda

× Naoya, Fukuda

Naoya, Fukuda

Search repository
著者名(英) Mujawamariya, Marie Grace

× Mujawamariya, Marie Grace

en Mujawamariya, Marie Grace

Search repository
Toshiyuki, Amagasa

× Toshiyuki, Amagasa

en Toshiyuki, Amagasa

Search repository
Naoya, Fukuda

× Naoya, Fukuda

en Naoya, Fukuda

Search repository
論文抄録
内容記述タイプ Other
内容記述 Multivariate time series prediction approaches have been significant in wide range of real-world application. This paper presents Neural Networks forecasting techniques which take as input multivariate time series data captured by sensors inside a greenhouse, and satellite weather data and predict environmental parameters such as temperature inside the greenhouse over 6 hours and 12 hours in the future. We report results of the prediction model and evaluate our models predictions accuracy based on MAE metric and standard deviation for the stability. Finally, we highlight and discuss about microclimate parameters that have significant effect for predicting precise temperature inside the greenhouse.
論文抄録(英)
内容記述タイプ Other
内容記述 Multivariate time series prediction approaches have been significant in wide range of real-world application. This paper presents Neural Networks forecasting techniques which take as input multivariate time series data captured by sensors inside a greenhouse, and satellite weather data and predict environmental parameters such as temperature inside the greenhouse over 6 hours and 12 hours in the future. We report results of the prediction model and evaluate our models predictions accuracy based on MAE metric and standard deviation for the stability. Finally, we highlight and discuss about microclimate parameters that have significant effect for predicting precise temperature inside the greenhouse.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10539261
書誌情報 研究報告ドキュメントコミュニケーション(DC)

巻 2022-DC-125, 号 1, p. 1-6, 発行日 2022-06-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8892
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:03:31.960033
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3