ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2022
  4. 2022-BIO-70

多様な実験設定におけるランク学習を用いた化合物スクリーニングの性能評価

https://ipsj.ixsq.nii.ac.jp/records/218679
https://ipsj.ixsq.nii.ac.jp/records/218679
f5bb00c1-2908-45c6-965d-98c963254f3f
名前 / ファイル ライセンス アクション
IPSJ-BIO22070049.pdf IPSJ-BIO22070049.pdf (655.4 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-06-20
タイトル
タイトル 多様な実験設定におけるランク学習を用いた化合物スクリーニングの性能評価
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
東京工業大学情報理工学院情報工学系
著者所属
東京工業大学情報理工学院情報工学系
著者所属(英)
en
Department of Computer Science, School of Computing, Tokyo Institute of Technology
著者所属(英)
en
Department of Computer Science, School of Computing, Tokyo Institute of Technology
著者名 古井, 海里

× 古井, 海里

古井, 海里

Search repository
大上, 雅史

× 大上, 雅史

大上, 雅史

Search repository
論文抄録
内容記述タイプ Other
内容記述 情報検索分野で発展してきたランク学習手法が,リガンドベースのバーチャルスクリーニング (LBVS) に活用されている.ランク学習は順序関係を学習する機械学習の枠組みであり,異なる環境の実験データを統合するのに適しているという利点が注目されている.我々の取り組みで,複数の環境のアッセイデータが得られる状況において,新規標的に対するランキング予測が回帰モデルよりも予測精度の面で優れていることを明らかにした.しかし,標的と同ファミリーのタンパク質や標的そのものに関するアッセイ情報が全く無い,あるいは少し存在するなどの様々な状況下において LBVS にランク学習が適しているかは未知であった.また,従来研究で用いられていた NDCG (Normalized Discounted Cumulative Gain) 指標は他のモデルと比較して優れているかのみを評価するため,予測モデルがランダムな結果よりも悪い結果を出したかどうか考慮できないという問題があった.本研究は,多様なアッセイ情報の保有状況を想定した学習データを用いて,ランク学習手法の LBVS 性能を検証した.結果として,ランク学習手法はランキング予測において回帰と同等以上の予測精度であり,特に標的と関連するアッセイが複数存在する状況でランク学習のデータ統合が有効である可能性が示唆された.さらに,ランダムな予測を基準とした予測性能を評価する目的で新たに提案したランキング指標「Normalized Enrichment Discounted Cumulative Gain (NEDCG)」が,複数のテストデータについて予測結果の良し悪しを評価するのに適していた.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2022-BIO-70, 号 49, p. 1-6, 発行日 2022-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8590
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:05:03.507949
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3