ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2022
  4. 2022-BIO-70

Transformer based model for Point Process with past sequence-representative vector

https://ipsj.ixsq.nii.ac.jp/records/218632
https://ipsj.ixsq.nii.ac.jp/records/218632
0f9fd6e6-d0e0-4798-952e-d47ec473e6d1
名前 / ファイル ライセンス アクション
IPSJ-BIO22070002.pdf IPSJ-BIO22070002.pdf (1.2 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
BIO:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-06-20
タイトル
タイトル Transformer based model for Point Process with past sequence-representative vector
タイトル
言語 en
タイトル Transformer based model for Point Process with past sequence-representative vector
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of System Engineering, Wakayama University
著者所属
Graduate School of System Engineering, Wakayama University
著者所属
Graduate School of System Engineering, Wakayama University
著者所属(英)
en
Graduate School of System Engineering, Wakayama University
著者所属(英)
en
Graduate School of System Engineering, Wakayama University
著者所属(英)
en
Graduate School of System Engineering, Wakayama University
著者名 Fumiya, Nishizawa

× Fumiya, Nishizawa

Fumiya, Nishizawa

Search repository
Sujun, Hong

× Sujun, Hong

Sujun, Hong

Search repository
Hirotaka, Hachiya

× Hirotaka, Hachiya

Hirotaka, Hachiya

Search repository
著者名(英) Fumiya, Nishizawa

× Fumiya, Nishizawa

en Fumiya, Nishizawa

Search repository
Sujun, Hong

× Sujun, Hong

en Sujun, Hong

Search repository
Hirotaka, Hachiya

× Hirotaka, Hachiya

en Hirotaka, Hachiya

Search repository
論文抄録
内容記述タイプ Other
内容記述 Recently, a Transformer-based partially trainable point process has been proposed, where a feature vector is extracted from past event sequence to predict the future event. However, high dependencies of the feature on last event and limitation of handmade designed hazard function would cause deterioration peformance. To overcome these problems, we propose a Transformer-based fully trainable point process, where multiple trainable vectors are embedded into the past event sequence and are transformed through an attention mechanism to realize adaptive and general approximation and prediction.We show the effectiveness of our proposed method through experiments on two datasets.
論文抄録(英)
内容記述タイプ Other
内容記述 Recently, a Transformer-based partially trainable point process has been proposed, where a feature vector is extracted from past event sequence to predict the future event. However, high dependencies of the feature on last event and limitation of handmade designed hazard function would cause deterioration peformance. To overcome these problems, we propose a Transformer-based fully trainable point process, where multiple trainable vectors are embedded into the past event sequence and are transformed through an attention mechanism to realize adaptive and general approximation and prediction.We show the effectiveness of our proposed method through experiments on two datasets.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2022-BIO-70, 号 2, p. 1-5, 発行日 2022-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8590
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:06:02.209477
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3