ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2022
  4. 2022-MPS-138

HSICを拡張した条件付き独立検定

https://ipsj.ixsq.nii.ac.jp/records/218599
https://ipsj.ixsq.nii.ac.jp/records/218599
a3c62b38-3944-445f-9d63-88cb51df8ac9
名前 / ファイル ライセンス アクション
IPSJ-MPS22138029.pdf IPSJ-MPS22138029.pdf (936.0 kB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-06-20
タイトル
タイトル HSICを拡張した条件付き独立検定
タイトル
言語 en
タイトル Extending HSIC for Testing Conditional Independence
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
大阪大学基礎工学研究科
著者所属
大阪大学基礎工学研究科
著者所属(英)
en
Graduate School of Engineering Science, Osaka University
著者所属(英)
en
Graduate School of Engineering Science, Osaka University
著者名 張, 秉元

× 張, 秉元

張, 秉元

Search repository
鈴木, 讓

× 鈴木, 讓

鈴木, 讓

Search repository
著者名(英) Bingyuan, Zhang

× Bingyuan, Zhang

en Bingyuan, Zhang

Search repository
Joe, Suzuki

× Joe, Suzuki

en Joe, Suzuki

Search repository
論文抄録
内容記述タイプ Other
内容記述 Conditional Independence (CI) testing is a fundamental problem in statistics, which is applied directly to causal discovery. Many nonparametric CI tests are developed, but a common challenge exists: current methods perform poorly with a high dimensional conditioning set. To tackle this problem, we consider a novel nonparametric CI test using a kernel-based measure, which can be viewed as an extension of the Hilbert-Schmidt Independence Criterion (HSIC). The experimental results show that our proposed method leads to a significant performance improvement when compared with previous methods. In particular, our method performs well against the growth of the dimension of the conditioning set. Meanwhile, our method shows competitive scalability regarding the sample size ???? and the dimension of the conditioning set.
論文抄録(英)
内容記述タイプ Other
内容記述 Conditional Independence (CI) testing is a fundamental problem in statistics, which is applied directly to causal discovery. Many nonparametric CI tests are developed, but a common challenge exists: current methods perform poorly with a high dimensional conditioning set. To tackle this problem, we consider a novel nonparametric CI test using a kernel-based measure, which can be viewed as an extension of the Hilbert-Schmidt Independence Criterion (HSIC). The experimental results show that our proposed method leads to a significant performance improvement when compared with previous methods. In particular, our method performs well against the growth of the dimension of the conditioning set. Meanwhile, our method shows competitive scalability regarding the sample size n and the dimension of the conditioning set.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2022-MPS-138, 号 29, p. 1-6, 発行日 2022-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:06:48.641378
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3