ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2022
  4. 2022-MPS-138

Adversarial Attacks and Defenses for Non-Parametric Two-Sample Tests

https://ipsj.ixsq.nii.ac.jp/records/218575
https://ipsj.ixsq.nii.ac.jp/records/218575
f5129a35-e633-4472-8d27-e31c438f6067
名前 / ファイル ライセンス アクション
IPSJ-MPS22138005.pdf IPSJ-MPS22138005.pdf (3.0 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-06-20
タイトル
タイトル Adversarial Attacks and Defenses for Non-Parametric Two-Sample Tests
タイトル
言語 en
タイトル Adversarial Attacks and Defenses for Non-Parametric Two-Sample Tests
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
School of Computing, National University of Singapore
著者所属
RIKEN Center for Advanced Intelligence
著者所属
DeSI Lab, AAII, University of Technology Sydney
Project (AIP)
著者所属
RIKEN Center for Advanced Intelligence/Graduate School of Frontier Sciences, The University of Tokyo
著者所属
School of Computing, National University of Singapore
著者所属(英)
en
School of Computing, National University of Singapore
著者所属(英)
en
RIKEN Center for Advanced Intelligence
著者所属(英)
en
DeSI Lab, AAII, University of Technology Sydney
Project (AIP)
著者所属(英)
en
RIKEN Center for Advanced Intelligence/Graduate School of Frontier Sciences, The University of Tokyo
著者所属(英)
en
School of Computing, National University of Singapore
著者名 Xilie, Xu

× Xilie, Xu

Xilie, Xu

Search repository
Jingfeng, Zhang

× Jingfeng, Zhang

Jingfeng, Zhang

Search repository
Feng, Liu

× Feng, Liu

Feng, Liu

Search repository
Masashi, Sugiyama

× Masashi, Sugiyama

Masashi, Sugiyama

Search repository
Mohan, Kankanhalli

× Mohan, Kankanhalli

Mohan, Kankanhalli

Search repository
著者名(英) Xilie, Xu

× Xilie, Xu

en Xilie, Xu

Search repository
Jingfeng, Zhang

× Jingfeng, Zhang

en Jingfeng, Zhang

Search repository
Feng, Liu

× Feng, Liu

en Feng, Liu

Search repository
Masashi, Sugiyama

× Masashi, Sugiyama

en Masashi, Sugiyama

Search repository
Mohan, Kankanhalli

× Mohan, Kankanhalli

en Mohan, Kankanhalli

Search repository
論文抄録
内容記述タイプ Other
内容記述 Non-parametric two-sample tests (TSTs) that judge whether two sets of samples are drawn from the same distribution, have been widely used in the analysis of critical data. People tend to employ TSTs as trusted basic tools and rarely have any doubt about their reliability. This paper systematically uncovers the failure mode of non-parametric TSTs through adversarial attacks and then proposes corresponding defense strategies. First, we theoretically show that an adversary can upperbound the distributional shift which guarantees the attack’s invisibility. Furthermore, we theoretically find that the adversary can also degrade the lower bound of a TST’s test power, which enables us to iteratively minimize the test criterion in order to search for adversarial pairs. To enable TST-agnostic attacks, we propose an ensemble attack (EA) framework that jointly minimizes the different types of test criteria. Second, to robustify TSTs, we propose a max-min optimization that iteratively generates adversarial pairs to train the deep kernels. Extensive experiments on both simulated and real-world datasets validate the adversarial vulnerabilities of non-parametric TSTs and the effectiveness of our proposed defense.
論文抄録(英)
内容記述タイプ Other
内容記述 Non-parametric two-sample tests (TSTs) that judge whether two sets of samples are drawn from the same distribution, have been widely used in the analysis of critical data. People tend to employ TSTs as trusted basic tools and rarely have any doubt about their reliability. This paper systematically uncovers the failure mode of non-parametric TSTs through adversarial attacks and then proposes corresponding defense strategies. First, we theoretically show that an adversary can upperbound the distributional shift which guarantees the attack’s invisibility. Furthermore, we theoretically find that the adversary can also degrade the lower bound of a TST’s test power, which enables us to iteratively minimize the test criterion in order to search for adversarial pairs. To enable TST-agnostic attacks, we propose an ensemble attack (EA) framework that jointly minimizes the different types of test criteria. Second, to robustify TSTs, we propose a max-min optimization that iteratively generates adversarial pairs to train the deep kernels. Extensive experiments on both simulated and real-world datasets validate the adversarial vulnerabilities of non-parametric TSTs and the effectiveness of our proposed defense.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2022-MPS-138, 号 5, p. 1-27, 発行日 2022-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:07:17.893568
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3