ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ヒューマンコンピュータインタラクション(HCI)
  3. 2022
  4. 2022-HCI-198

スクワットによる脚力疲労にに関伴すうる日検常討生活動作時の重心揺動変化に関する検討

https://ipsj.ixsq.nii.ac.jp/records/218288
https://ipsj.ixsq.nii.ac.jp/records/218288
0120d517-7648-431b-8957-3fbca4745f05
名前 / ファイル ライセンス アクション
IPSJ-HCI22198002.pdf IPSJ-HCI22198002.pdf (960.3 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-06-09
タイトル
タイトル スクワットによる脚力疲労にに関伴すうる日検常討生活動作時の重心揺動変化に関する検討
タイトル
言語 en
タイトル Research on the Change of Swaying Center of Gravity during Daily Activities Due to Leg Strength Fatigue by Squatting
言語
言語 jpn
キーワード
主題Scheme Other
主題 身体運動・計測
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
大阪大学大学院情報科学研究科
著者所属
青山学院大学理工学部情報テクノロジー学科
著者所属
大阪大学大学院医学系研究科
著者所属
東北大学電気通信研究所
著者所属
大阪大学大学院医学系研究科
著者所属
大阪大学大学院情報科学研究科
著者所属
青山学院大学理工学部情報テクノロジー学科
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Integrated Information Technology, Aoyama Gakuin University
著者所属(英)
en
Graduate School of Medicine, Osaka University
著者所属(英)
en
Research Institute of Electrical Communication, Tohoku
著者所属(英)
en
Graduate School of Medicine, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Integrated Information Technology, Aoyama Gakuin University
著者名 新崎, 義峰

× 新崎, 義峰

新崎, 義峰

Search repository
伊藤, 弘大

× 伊藤, 弘大

伊藤, 弘大

Search repository
小玉, 伽那

× 小玉, 伽那

小玉, 伽那

Search repository
藤田, 和之

× 藤田, 和之

藤田, 和之

Search repository
武田, 理宏

× 武田, 理宏

武田, 理宏

Search repository
尾上, 孝雄

× 尾上, 孝雄

尾上, 孝雄

Search repository
伊藤, 雄一

× 伊藤, 雄一

伊藤, 雄一

Search repository
著者名(英) Yoshio, Shinzaki

× Yoshio, Shinzaki

en Yoshio, Shinzaki

Search repository
Kodai, Ito

× Kodai, Ito

en Kodai, Ito

Search repository
Kana, Kodama

× Kana, Kodama

en Kana, Kodama

Search repository
Kazuyuki, Fujita

× Kazuyuki, Fujita

en Kazuyuki, Fujita

Search repository
Takeda, Toshihiro

× Takeda, Toshihiro

en Takeda, Toshihiro

Search repository
Takao, Onoye

× Takao, Onoye

en Takao, Onoye

Search repository
Yuichi, Itoh\n

× Yuichi, Itoh\n

en Yuichi, Itoh\n

Search repository
論文抄録
内容記述タイプ Other
内容記述 For the elderly to live comfortably at home, it is necessary to prevent the deterioration of mobility called locomotive syndrome. However, many people visit a medical institution when weakness in their legs and backs becomes apparent, often before it is too late. In this study, we aim to develop a system to estimate leg strength from daily activities. As a preliminary step, we implemented a floor-type device that can acquire center-of-gravity and weight changes, and conducted an evaluation experiment of leg strength estimation using the device. In the experiment, center-of-gravity and weight changes were measured in three 22-year-old students during standing, sitting, and walking before and after squatting, and significant differences were investigated and classified by machine learning. The results showed that significant differences were found in many of the features, and the classification was successful with a 90.1% correct rate.
論文抄録(英)
内容記述タイプ Other
内容記述 For the elderly to live comfortably at home, it is necessary to prevent the deterioration of mobility called locomotive syndrome. However, many people visit a medical institution when weakness in their legs and backs becomes apparent, often before it is too late. In this study, we aim to develop a system to estimate leg strength from daily activities. As a preliminary step, we implemented a floor-type device that can acquire center-of-gravity and weight changes, and conducted an evaluation experiment of leg strength estimation using the device. In the experiment, center-of-gravity and weight changes were measured in three 22-year-old students during standing, sitting, and walking before and after squatting, and significant differences were investigated and classified by machine learning. The results showed that significant differences were found in many of the features, and the classification was successful with a 90.1% correct rate.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA1221543X
書誌情報 研究報告ヒューマンコンピュータインタラクション(HCI)

巻 2022-HCI-198, 号 2, p. 1-6, 発行日 2022-06-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8760
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:12:03.911516
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3