ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. モバイルコンピューティングと新社会システム(MBL)
  3. 2022
  4. 2022-MBL-103

Human Identification Based On Point Cloud Captured By Small-Size LiDAR

https://ipsj.ixsq.nii.ac.jp/records/218025
https://ipsj.ixsq.nii.ac.jp/records/218025
221378ba-c256-4aac-a9b4-af930e63c037
名前 / ファイル ライセンス アクション
IPSJ-MBL22103038.pdf IPSJ-MBL22103038.pdf (21.4 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-05-19
タイトル
タイトル Human Identification Based On Point Cloud Captured By Small-Size LiDAR
タイトル
言語 en
タイトル Human Identification Based On Point Cloud Captured By Small-Size LiDAR
言語
言語 eng
キーワード
主題Scheme Other
主題 空間情報処理
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Grad. Sch. of Info. Sci. and Tech., Osaka University
著者所属
Grad. Sch. of Info. Sci. and Tech., Osaka University
著者所属
Grad. Sch. of Info. Sci. and Tech., Osaka University
著者所属(英)
en
Grad. Sch. of Info. Sci. and Tech., Osaka University
著者所属(英)
en
Grad. Sch. of Info. Sci. and Tech., Osaka University
著者所属(英)
en
Grad. Sch. of Info. Sci. and Tech., Osaka University
著者名 Shota, Yamada

× Shota, Yamada

Shota, Yamada

Search repository
Rizk, Hamada

× Rizk, Hamada

Rizk, Hamada

Search repository
Hirozumi, Yamaguchi

× Hirozumi, Yamaguchi

Hirozumi, Yamaguchi

Search repository
著者名(英) Shota, Yamada

× Shota, Yamada

en Shota, Yamada

Search repository
Rizk, Hamada

× Rizk, Hamada

en Rizk, Hamada

Search repository
Hirozumi, Yamaguchi

× Hirozumi, Yamaguchi

en Hirozumi, Yamaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 The demand for safety-enhancing solutions is on the rise, especially due to COVID-19's rapid spread. In order to track infected cases and hence restrict the spread of the virus, real-time life-logging is an essential application. This application highlights the necessity for a precise human identification technique in situations when cameras are not feasible owing to privacy concerns. The potential of the LiDAR sensor to represent the surrounding world in the form of a 3D point cloud has recently gained interest. In this paper, we present a new wearable device with a small-sized LiDAR that may be used to create an onboard human identification system for life-logging. Our proposed system starts with clustering to remove noise and background. Then fisher features are extracted from them. After that, the collected characteristics are utilized to train classifiers to identify the subjects. We conducted two different experiments to evaluate the suggested system. We collected six and thirteen subjects for each experiment. The results show that the proposed system can effectively remove noise and accurately identify subjects with at least 95% accuracy in both experiments.
論文抄録(英)
内容記述タイプ Other
内容記述 The demand for safety-enhancing solutions is on the rise, especially due to COVID-19's rapid spread. In order to track infected cases and hence restrict the spread of the virus, real-time life-logging is an essential application. This application highlights the necessity for a precise human identification technique in situations when cameras are not feasible owing to privacy concerns. The potential of the LiDAR sensor to represent the surrounding world in the form of a 3D point cloud has recently gained interest. In this paper, we present a new wearable device with a small-sized LiDAR that may be used to create an onboard human identification system for life-logging. Our proposed system starts with clustering to remove noise and background. Then fisher features are extracted from them. After that, the collected characteristics are utilized to train classifiers to identify the subjects. We conducted two different experiments to evaluate the suggested system. We collected six and thirteen subjects for each experiment. The results show that the proposed system can effectively remove noise and accurately identify subjects with at least 95% accuracy in both experiments.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11851388
書誌情報 研究報告モバイルコンピューティングと新社会システム(MBL)

巻 2022-MBL-103, 号 38, p. 1-8, 発行日 2022-05-19
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8817
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:18:05.178919
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3