ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.63
  3. No.5

Content-based Stock Recommendation Using Smartphone Data

https://ipsj.ixsq.nii.ac.jp/records/217933
https://ipsj.ixsq.nii.ac.jp/records/217933
65c885b0-bdb2-4ec0-8cc8-46c99ee7b3a5
名前 / ファイル ライセンス アクション
IPSJ-JNL6305007.pdf IPSJ-JNL6305007.pdf (1.2 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2022-05-15
タイトル
タイトル Content-based Stock Recommendation Using Smartphone Data
タイトル
言語 en
タイトル Content-based Stock Recommendation Using Smartphone Data
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:情報システム論文] stock recommendation, propensity score matching, smartphone data
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
NTT DOCOMO, INC.
著者所属
NTT DOCOMO, INC.
著者所属
NTT DOCOMO, INC.
著者所属
NTT DOCOMO, INC.
著者所属
NTT DOCOMO, INC.
著者所属(英)
en
NTT DOCOMO, INC.
著者所属(英)
en
NTT DOCOMO, INC.
著者所属(英)
en
NTT DOCOMO, INC.
著者所属(英)
en
NTT DOCOMO, INC.
著者所属(英)
en
NTT DOCOMO, INC.
著者名 Kohsuke, Kubota

× Kohsuke, Kubota

Kohsuke, Kubota

Search repository
Hiroyuki, Sato

× Hiroyuki, Sato

Hiroyuki, Sato

Search repository
Wataru, Yamada

× Wataru, Yamada

Wataru, Yamada

Search repository
Keiichi, Ochiai

× Keiichi, Ochiai

Keiichi, Ochiai

Search repository
Hiroshi, Kawakami

× Hiroshi, Kawakami

Hiroshi, Kawakami

Search repository
著者名(英) Kohsuke, Kubota

× Kohsuke, Kubota

en Kohsuke, Kubota

Search repository
Hiroyuki, Sato

× Hiroyuki, Sato

en Hiroyuki, Sato

Search repository
Wataru, Yamada

× Wataru, Yamada

en Wataru, Yamada

Search repository
Keiichi, Ochiai

× Keiichi, Ochiai

en Keiichi, Ochiai

Search repository
Hiroshi, Kawakami

× Hiroshi, Kawakami

en Hiroshi, Kawakami

Search repository
論文抄録
内容記述タイプ Other
内容記述 The number of investors holding risky assets in Japan is much lower than that in western countries even though it is an effective way for building investor assets. Although Japanese investment companies offer a service to invest in points through coalition loyalty programs instead of actual currency to address this situation, the problem still persists. One reason for this is that novice investors do not know in which stocks to invest. One possible solution is recommending stocks; however, we still face the cold-start problem because there is no transaction history for novice investors. In this study, we propose a novel content-based recommendation approach that utilizes touchpoint information, e.g., payment and app usage data, on smartphones in daily life. This approach employs user-weighted recency, frequency, and monetary, called UW-RFM and a complementary module to comply with Japanese guidelines that prohibit presenting only a small number of companies and establishing a minimum number of companies to be presented. We conduct an online evaluation to validate the effectiveness of the proposed approach in an actual investment service. The evaluation results show that the proposed approach motivates users to invest more, i.e., 0.352 more clicks on the recommendation area and 3,016 points (yen), than the baseline method that does not consider touchpoint information.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.361
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 The number of investors holding risky assets in Japan is much lower than that in western countries even though it is an effective way for building investor assets. Although Japanese investment companies offer a service to invest in points through coalition loyalty programs instead of actual currency to address this situation, the problem still persists. One reason for this is that novice investors do not know in which stocks to invest. One possible solution is recommending stocks; however, we still face the cold-start problem because there is no transaction history for novice investors. In this study, we propose a novel content-based recommendation approach that utilizes touchpoint information, e.g., payment and app usage data, on smartphones in daily life. This approach employs user-weighted recency, frequency, and monetary, called UW-RFM and a complementary module to comply with Japanese guidelines that prohibit presenting only a small number of companies and establishing a minimum number of companies to be presented. We conduct an online evaluation to validate the effectiveness of the proposed approach in an actual investment service. The evaluation results show that the proposed approach motivates users to invest more, i.e., 0.352 more clicks on the recommendation area and 3,016 points (yen), than the baseline method that does not consider touchpoint information.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.361
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 63, 号 5, 発行日 2022-05-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:19:54.271321
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3