@techreport{oai:ipsj.ixsq.nii.ac.jp:00217884, author = {中島, 健太 and 原山, 美知子 and Kenta, Nakashima and Michiko, Harayama}, issue = {2}, month = {May}, note = {大規模な Autonomous System (AS)の障害やネットワーク攻撃による被害の発生は,Border Gateway Protocol(BGP)のメッセージに影響を与え,インターネット通信全体の遅延や不安定化などをもたらす.本研究ではこれを BGP ハイジャックと捉え,深層学習を用いた BGP メッセージの異常検知を提案する.本報告では Malaysia-Telekom, Level3, Google, Facebook に起因する 4 つのインシデントを取り上げ,インシデントの発生周辺期間の BGP メッセージを解析して ASpath 長の統計値など9つの特徴量を求めた.これを Multilayer Perceptron (MLP) に学習させインシデントの検知精度を求めた.その結果,新規 Announce や Withdraw などいくつかの特徴量はインシデントに連動した変化が観察された.また,Malaysia-Telekom と Level3 のインシデントについては一定の検知精度が得られた.本報告では,BGP メッセージの特徴量の解析方法,特徴量の変化を示し,本手法による異常検知性能を検証する., Failures of large autonomous systems (ASs) and network attacks can affect Border Gateway Protocol (BGP) messages, causing delays and instability in overall Internet communications. We note this as BGP hijacking and propose an anomaly detection method for BGP messages using deep learning. We report four incidents caused by Malaysia-Telekom, Level3, Google, and Facebook. We analyze BGP messages around the incidents to obtain nine features, such as AS path length statistics. These were trained on a multilayer perceptron (MLP) to determine the accuracy of incident detection. As a result, some of the features, such as new BGP announcements and withdrawals, change in conjunction with incidents. Detection accuracies for Malaysia-Telekom and Level 3 incidents were high. In this report, we show how to analyze the features of BGP messages, how they change, and the anomaly detection performance of our method.}, title = {深層学習を用いたBGPハイジャックの検知}, year = {2022} }