ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.15
  4. No.2

Construction of Japanese Imperial Diet Database Using Deep Neural Network

https://ipsj.ixsq.nii.ac.jp/records/217666
https://ipsj.ixsq.nii.ac.jp/records/217666
d70c1b8f-2714-41eb-8d63-3d345bb5fa98
名前 / ファイル ライセンス アクション
IPSJ-TOD1502004.pdf IPSJ-TOD1502004.pdf (1.4 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2022-04-07
タイトル
タイトル Construction of Japanese Imperial Diet Database Using Deep Neural Network
タイトル
言語 en
タイトル Construction of Japanese Imperial Diet Database Using Deep Neural Network
言語
言語 eng
キーワード
主題Scheme Other
主題 [実例・実践論文] OCR, parliament minutes, deep neural network
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Gakushuuin University
著者所属(英)
en
Gakushuuin University
著者名 Naoki, Nonaka

× Naoki, Nonaka

Naoki, Nonaka

Search repository
Naoto, Nonaka

× Naoto, Nonaka

Naoto, Nonaka

Search repository
著者名(英) Naoki, Nonaka

× Naoki, Nonaka

en Naoki, Nonaka

Search repository
Naoto, Nonaka

× Naoto, Nonaka

en Naoto, Nonaka

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this work we construct a database of the Japanese Imperial Diet. The Imperial Diet was established in 1890 after the promulgation of the Constitution of the Empire of Japan and its historical analysis is crucial to understand the actual functioning of the Japanese Diet. Since the minutes of the Imperial Diet were publicly available only in image format, textization is an imperative process for further analysis. Following the recent advancement of the deep neural networks (DNNs), especially in the character recognition, we apply DNNs to construct a text database of the Imperial Diet. In the course of textization, we trained DNNs using multiple datasets while introducing a novel approach of applying separate batch normalization to datasets. The results of the tentative analysis show a significant potential to deepen our understanding of the development of parliamentary democracy in Japan.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 In this work we construct a database of the Japanese Imperial Diet. The Imperial Diet was established in 1890 after the promulgation of the Constitution of the Empire of Japan and its historical analysis is crucial to understand the actual functioning of the Japanese Diet. Since the minutes of the Imperial Diet were publicly available only in image format, textization is an imperative process for further analysis. Following the recent advancement of the deep neural networks (DNNs), especially in the character recognition, we apply DNNs to construct a text database of the Imperial Diet. In the course of textization, we trained DNNs using multiple datasets while introducing a novel approach of applying separate batch normalization to datasets. The results of the tentative analysis show a significant potential to deepen our understanding of the development of parliamentary democracy in Japan.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 15, 号 2, 発行日 2022-04-07
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:24:57.295377
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3