{"updated":"2025-01-19T15:25:41.521191+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00217649","sets":["1164:10193:10905:10906"]},"path":["10906"],"owner":"44499","recid":"217649","title":["エラー確率が不均質な表面符号の復号のフェニック木を用いた高速化"],"pubdate":{"attribute_name":"公開日","attribute_value":"2022-03-17"},"_buckets":{"deposit":"5d212720-5e03-48fc-b37f-17e1abe25886"},"_deposit":{"id":"217649","pid":{"type":"depid","value":"217649","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"エラー確率が不均質な表面符号の復号のフェニック木を用いた高速化","author_link":["564282","564283","564281"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"エラー確率が不均質な表面符号の復号のフェニック木を用いた高速化"},{"subitem_title":"Fast decoding algorithms with Fenwick trees for surface codes under non-uniform errors","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2022-03-17","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"東京大学理科学部物理学科/NTTコンピュータ&データサイエンス研究所"},{"subitem_text_value":"NTTコンピュータ&データサイエンス研究所/JSTさきがけ"},{"subitem_text_value":"NTTコンピュータ&データサイエンス研究所"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/217649/files/IPSJ-QS22005027.pdf","label":"IPSJ-QS22005027.pdf"},"date":[{"dateType":"Available","dateValue":"2024-03-17"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-QS22005027.pdf","filesize":[{"value":"961.8 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"53"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"45407c4f-1bc7-4d77-b4dc-86cfb3d758e4","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2022 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"新居, 智将"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"鈴木, 泰成"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"徳永, 裕己"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12894105","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2435-6492","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"表面符号は現在量子誤り訂正符号として最も注目されているものの 1 つである.表面符号の復号方法の 1 つに,エラーの推定を最小重み完全マッチング問題に帰着して復号する方法がある.量子ビットによってエラーが起きている確率が均一でない場合,重みが不均質な最小重み完全マッチング問題を解くことで復号の精度が向上することが知られている.しかし,その際に必要な計算量は確率が均一である場合に比べて大きくなってしまう.この発表では,一定の仮定の下でフェニック木を用いることで,最小重み完全マッチング問題による表面符号の復号で必要となる計算量を削減する方法を提案する.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Surface codes are one of the most promising quantum error-correcting codes. The estimation task of recovery operations for surface codes can be reduced to an instance of a minimum-weight perfect matching problem. When the error probabilities of physical qubits are not uniform, solving a minimum-weight perfect matching problem with non-uniform weights is required to improve the performance of error correction. However, the decoding algorithm under non-uniform weights requires longer than the uniform cases. In this paper, we propose a fast decoding algorithm for surface codes that uses a Fenwick tree as a key component. Our algorithm can reduce the time complexity with an approximation and achieve lower logical error rates than existing methods.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"10","bibliographic_titles":[{"bibliographic_title":"量子ソフトウェア(QS)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2022-03-17","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"27","bibliographicVolumeNumber":"2022-QS-5"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"created":"2025-01-19T01:18:08.288080+00:00","id":217649,"links":{}}