{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00217647","sets":["1164:10193:10905:10906"]},"path":["10906"],"owner":"44499","recid":"217647","title":["変分量子アルゴリズムに基づくポアソン方程式の求解"],"pubdate":{"attribute_name":"公開日","attribute_value":"2022-03-17"},"_buckets":{"deposit":"740d535a-80b7-4660-9eda-7b575103cafd"},"_deposit":{"id":"217647","pid":{"type":"depid","value":"217647","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"変分量子アルゴリズムに基づくポアソン方程式の求解","author_link":["564264","564266","564262","564261","564263","564265"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"変分量子アルゴリズムに基づくポアソン方程式の求解"},{"subitem_title":"Solving the Poisson equation based on variational quantum algorithms","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2022-03-17","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"株式会社豊田中央研究所"},{"subitem_text_value":"株式会社豊田中央研究所"},{"subitem_text_value":"株式会社豊田中央研究所"},{"subitem_text_value":"株式会社豊田中央研究所"},{"subitem_text_value":"トヨタ自動車株式会社"},{"subitem_text_value":"東京大学フォトンサイエンス研究機構"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/217647/files/IPSJ-QS22005025.pdf","label":"IPSJ-QS22005025.pdf"},"date":[{"dateType":"Available","dateValue":"2024-03-17"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-QS22005025.pdf","filesize":[{"value":"914.2 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"53"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"7491b944-e545-4905-9cd0-6a1fa30380cb","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2022 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"佐藤, 勇気"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"近藤, 瑠歩"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"小出, 智士"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"梶田, 晴司"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"高松, 英紀"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"井元, 信之"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12894105","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2435-6492","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"近年のモノづくりは,物理現象の数値シミュレーションを活用しており,数値シミュレーションは,対象とする物理現象を記述する偏微分方程式を解く問題に帰着する.数値シミュレーションの大規模化および高速化のためには,偏微分方程式を省メモリで高速に解く手法が必要である.本研究では,最も基礎的な偏微分方程式であるポアソン方程式を対象とし,変分量子アルゴリズムに基づく偏微分方程式の数値解法において課題となっている勾配消失問題について議論する.変分量子アルゴリズムの目的関数の勾配が,パラメトライズした量子状態とポアソン方程式の入力項の内積で括れることを示し,数値実験により,その内積が 1 となるようにパラメータの初期値を設定することで最適化初期における勾配消失を回避できることを確認した.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Recently, product development processes often employ numerical simulations of physical phenomena, which is performed by solving the partial differential equation (PDE) describing the physical phenomena. Thus, a technique to solve PDEs as quickly as possible with less memory is necessary to reduce the time required to perform numerical simulations, increasing their scales. The present study focuses on the Poisson equation which is the most fundamental PDE, and discusses the vanishing gradient problem, which is known as the common problems in the variational quantum algorithms. Several numerical experiments showed that the vanishing gradient can be avoided at the early stage of optimization, without decreasing the accuracy of the solutions, by setting the initial parameters of a parametrized quantum circuit so that the fidelity of a parametrized quantum state and the input of the Poisson equation could be 1.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"6","bibliographic_titles":[{"bibliographic_title":"量子ソフトウェア(QS)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2022-03-17","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"25","bibliographicVolumeNumber":"2022-QS-5"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":217647,"updated":"2025-01-19T15:25:45.303998+00:00","links":{},"created":"2025-01-19T01:18:08.169148+00:00"}