{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00217634","sets":["1164:10193:10905:10906"]},"path":["10906"],"owner":"44499","recid":"217634","title":["反復改良法を用いた量子線形アルゴリズムにおける測定回数削減"],"pubdate":{"attribute_name":"公開日","attribute_value":"2022-03-17"},"_buckets":{"deposit":"de80485e-d792-4460-b0dc-b7ec28f0b291"},"_deposit":{"id":"217634","pid":{"type":"depid","value":"217634","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"反復改良法を用いた量子線形アルゴリズムにおける測定回数削減","author_link":["564203","564202","564201","564204"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"反復改良法を用いた量子線形アルゴリズムにおける測定回数削減"}]},"item_type_id":"4","publish_date":"2022-03-17","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"会津大学"},{"subitem_text_value":"筑波大学"},{"subitem_text_value":"筑波大学"},{"subitem_text_value":"会津大学"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/217634/files/IPSJ-QS22005012.pdf","label":"IPSJ-QS22005012.pdf"},"date":[{"dateType":"Available","dateValue":"2024-03-17"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-QS22005012.pdf","filesize":[{"value":"1.1 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"53"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"e6d75fe0-84ec-4f10-a59a-a95f83e40fe7","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2022 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"齊藤, 由将"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"李, 信偉"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"蔡, 東生"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"浅井, 信吉"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12894105","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2435-6492","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"量子線形アルゴリズムにおける解の精度と測定回数の関係について考える.一般的に,量子コンピュータから解を得るためには測定を行う必要があり,解の精度は測定回数に依存する.解となる n 量子ビット状態の N=2n 個の成分をεの精度で得るためには,測定のために精度εの量子状態を準備し,それを O(N/ε2) 回測定する必要がある.そのため,高精度の解を得るためには非常に多くの測定が必要になってしまう.本稿では,量子線形アルゴリズムにおける精度のために必要となる測定回数を減らすために,反復改良法を用いた量子・古典ハイブリッドアルゴリズムを提案する.提案手法は要求精度εの解を O(N log(1/ε)) の測定回数で得ることができる.また本手法は量子線形アルゴリズムにおける精度に依存する量子ビット数を削減することができる.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"7","bibliographic_titles":[{"bibliographic_title":"量子ソフトウェア(QS)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2022-03-17","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"12","bibliographicVolumeNumber":"2022-QS-5"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":217634,"updated":"2025-01-19T15:26:05.153227+00:00","links":{},"created":"2025-01-19T01:18:07.413155+00:00"}